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ABSTRACT

The atomic problem is approached a new within the framework of SED, allowing the zeropaint field to be.
modified by its interaction with matter. By requiring the complete matter-field system to satisfy a
principle of stahility against fluctuations, that characterizes the stationary regime, one is led in a natural
form to the Heisenberg equations of motion for the description of the mechanical part.

L BASIS FOR ANEwW SED

This is the second part of our contribution to this Conference, and should be read as the continuation of
part |, which deal with a relationship between Planck’s constant and cosmological constants involving the

large-numbers relation N% ~N,.As anticipated in the introduction contained in part I, we now present a

maodified version of SED that is suited to deal with the atomic problem and leads to results ‘which are fully
consistent with the quantum-formalism.

To make a long story short, we start as usual with the equation of metion for a particle subject to the
simultaneous action of an external binding force and the zeropoint radiation field. In an approximate form,
which is sufficient for the present analysis, one may wiite the corresponding Abraham-Lorentz equation
(usually renamed in the context of SED after Braffort and Marshall, two pioneers of the theory)

mX = mt X +F(x) + eE(x, t). (1)

where E(x,t) represents the electric zeropoint field and is of course a stochastic variable with zero mean; the
magnetic force term is neglected, and the constant factor that appears in the radiation reaction term is the
time parameter © = 2e%/3mc>. Given the external force F(), the problem is simply stated: look for the
stationary solutions of equation (1) and find out if they have something to do with the corresponding quantum
description, after assigning adequate statistical properties to the (vacuum} field E(x.t). '

This kind of program has been carried out for some particular problems with results that go from
satisfactory to excellent. For example, excellent results are obtained in the study of van der Waals and
Casimir forces, the diamagnetic properties of electrans, efc.; we speak only of satisfactory results for the
harmonic oscillator, because the excited levels, even if they are there, appear in an entirely formal way, more
or less as they do in usual quantum theory; thus, the physics remains obscure. As was said before, when
dealing however with the hydrogenic atom, the results of such a direct approach to the problem are
disastrous: no bound ground state is predicted.

A more careful consideration of the above examples shows that the different problems have not been
treated with equity. Indeed, one usually takes for granted the statistical properties of the vacuum field, and
uses these same properties from the beginning to the end of the calculation, as if the vacuum field were
exactly the same for ali problems, and equal to the free field. However, in other cases, for instance when
dealing with macroscopic bodies, as in the calculation of Casimir forces, one takes into consideration the
effects of the boundaries (which are of course made of atoms), so that the vacuum field is adjusted to the
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specific problem. Another such example is the calculation of the modification of the background field within a
dielectric material, in equilibrium with the atoms of the material. One may argue that a similar consideration
should be applied to alf cases, including the single atom. Indeed, the complete problem refers to the coupled
matter-field system, and in principle both parts of the system become mutually affected by the interaction , as
soon as they start to interact. Of course, to state the problem in these terms practically amounts to
surrendering, because it becomes intractable; however we may be somewhat less ambitious and consider the
effects of the adjustment of the field to the final equilibrium situation, by looking for a self-consistent stationary
solution of equation (1) that satisfies appropriate conditions, assuming that the matter-field system reaches a
situation of dynamical equilibrium —which is supposed to be precisely the situation dealt with by the quantum
formalism. In other words, one would expect a close correspondence between the self-consistent stationary
solutions of SED and the stationary solutions of quantum mechanics.

As a first approach in this direction, we consider a particular kind of stationary solutions which are
characterized by the fact that they are the less random possible solutions, as independent of the specific
realization of the random field, or, what amounts fo the same, as stable against small perturbations, as
possible."? These stable stationary solutions turn out to be characterized by two properties, namely, they
correspond precisely to the quantum mechanical solutions given by the Heisenberg equations of motion, and
moreover some ‘relevant' field components of the modified vacuum field end up having correlated phases,
which indicates a central aspect in which this field differs from the free vacuum field, characterized by
statistically independent phases.

IL SELF-CONSISTENT SED SOLUTION FOR A SIMPLE NONLINEAR PROBLEM

According to the previous discussion and contrary to standard practice in usual SED, along the treatment of
the mechanical part of the SED problem we consider the statistical properties of the vacuum field initially
unknown, and let them become determined by the requirements of the system itself under stationary
conditions, that is, once the quantum regime has heen attained. For arbitrarily small time intervals the
conditions of the system are largely arbitrary, and may even be inconsistent with the usual quantum behavior,
this is the reason we consider a system that has already evolved towards the quantum regime. We represent
the field as a time Fourier transform in the form

E(x,t) = Z:Ekc(x)aﬂce*“”kt +ce., k=o./c @
ok

The functions Ekc(x) carry all the space dependence of the field, whereas the coefficients ays are the
stochastic variables that detenmnine its statistical properties. Strictly speaking, the sum must be understood as
an integration, because the field contains all frequencies from zero to infinity; the point is that, as we shall
soon see, there are some specific frequencies to which the system responds with particular intensity (we cail
them the relevant frequencies); the rest of components taken together play the role of a noise, with little
influence on the determination of the basic equilibriurn properties. This noise is already being neglected in (2)
but it must be reintroduced when perferming a more detailed analysis (it gives rise, for instance, to radiative
corrections™?). In what foliows we further simplify the treatment by avoiding everywhere the question of the
polarization.

In the long-waveiength apprbximation one neglects the spatial dependence of the field; the Ekc are
therefore taken as constants, whose value is determined by the energy of the field (see equation (5) below).
Since the Fourier components EkaE correspond to an infinite number of modes, each with the same average

energy %hmk,the energy per mode of each of these components has an extremely sharp distribution, as

follows from the central limit theorem, and the random amplitudes aﬂj = (aE)j have surely a (very nearly)

Gaussian distribution sharply peaked around oy; thus, for all practical purposes one can consider them as
having fixed amplitudes but random phases. For the free vacuum field they are taken as statistically
independent, so that
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(a%) =0, (amarr) BigeDi ' | )]
al = &', | @

with the random phases ¢y uniformly distributed over (0,2n). Equation (3) is alright only for the noise (which
we are not taking into account), but not for the relevant frequencies, the properties of which are to be
generated by the theory itself (the generat rule will be given in section Il below). Equation (4), in contrast,
holds in generat; all the stochast:c:ty of the fi eld is now expressed in the random phases. With the selection
(4), we must take

~ . |nhe .
E, = “Tk (5)

for the energy per mode bo be %hmk. In the above expressions a superindex ® has been added to the field

amplitudes, with the purpose of introducing the following notation (we omit from now on the Cartesian indices
wherever they are unneccessary):

a, =a () =afe™™. (6)

Note that a, (t) and a0 have the same statistical properties.

4

The Braffort-Marshall equation that will be used for the analysis of the quantum regime reads therefore for

a one-dimensional problem,
mx = me X +F(x) + ez E(@)ac®e ™ +cc., _ D
with Ek given by (5) and random amplitudes of the form (4).

It should be clear that since a partial averaging is being performed over all modes of a given frequency, the
description afforded by equation (7) refers not to an individual particle, but to an ensemble of equivalent
particles, each one acted on by a specific mode of such frequency. Alternatively, we may refer to a partly
averaged behaviour of a given particle. Thus, the ensuing theory will be essentially statistical, just as is the
case with quantum mechanics. Also, the emerging mechanical variables are to be seen as partly averaged
random variables, and not as strictly individual locat variables; in pamcu!ar the correiations between variables
may be-poorly described.

To be above limitations and features of the ensuing theory, we must add that the detailed behaviour in
terms of the single field modes has not only becomes hidden, but is irretrievably lost for the description to
follow (hence also for the quantum description). We cannot, any more recover a fully deterministic picture by
‘adding the hidden variables’ or any similar simple procedure; it would not be a matter of embedding the
ensuing description into a larger theory, but of constructing a new one from scratch.

To solve equation (7) in geﬂeral"2 one starts by writing both the stationary x(t) and the force as Fourier
series in the form

x=Y F (o)™ +cc, (8)
k .
F) =y (0)e™ +cc, _ ©)
k
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50 that from (7) one gets the set of equations
m(—of +hod)Z, = &, +eE,al. _ - (10)

Both Z(w) and E)(m) may depend on arbitrary combinations of the random amplitudesaﬁ of the different

relevant frequencies ay, which are stochastic variables; further, (D(m) depends in general on Z(co) in a

complicated way, with the obvious exceptlon of the Ilnear-force problem. Observe that no speficific relation
among the relevant frequencies is being considered, as is done beforehand, for exampte in the treatment of
classical multiply periodic systems.

To simplify the exposition it is convenient to consider a simple nonlinear example that contains already the
typical features of the general case. A natural example is the anharmonic oscillator consisting of a linear
oscillator plus a cubic force term and governed by the equation - :

iﬂﬁx+w@:1§+%Em. - | (11)

The core of the problem reSIdes in the nonlinear part of the force; its Fourier coefficient is, from equations
(8) and (9},

T . ~
W= g e [ R0 3 255 12
nn'n’’

where the sum extends over the set of indices for which the frequencies satisfy the condition
k= ogt op s - - (13)

coming from the delta function that is generated by the time integration of ‘€@ *®v+r-) gxtended to infinite
limits. Note that this condition reduces the number of independent Fourier indices to two for a given frequency
®k. ' :

With the dissipative effect of the radiation reaction term mr % fully taken into account, oniy one stationary
solution of the form (8) should exist, corresponding to the ground state if the appropriate stationary fieid is
used. However, in the radiationless approximation —which corresponds to the gquantum mechanical
description-, the system admits more than one stationary soiution, and usually an infinite number of them. An
extra index () is therefore required to distinguish between different solutions:

X(l(t) = Zzane—kﬂnm‘ + C.C. . | . (14)
n . .

Note the reverse order of the subindices of @ in the exponent we have adopted this convention to adjust
the final results to the normal conventions of quantum mechanics, It will be seen below that the two indices
(here taken as different and denoted by n and o) play actually a symmetric role; therefore Greek letters will-be
used for both. Further, it will tum out that eg, = - 0. (See equation (55)), so that one may change the s:gn of
the time exponents by inverting the order of the indices, and write equation (14) in the form

xa(t) = BZ e +cuc. (15)

The Fourier coefficient of the nonlinear term of frequency w,; is then
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V@), =% P EivFireZiday (16)
where the summation is to be performed over the set of indices such that
Dgp = Dpy' + Doy + Dy, : _ ' {17)

_ according to (13). Although the number of subindices has increased, it should be kept in mind that in equation
(16)-there_is only a double sum, which means that the additional indices must be related to the summation
indices, as wiHbe clarified below. )

‘With (18), equation (10) becomes for this problem
. g pad i T han T 6= (
(~olp +itwgy +05)Zeg +x) (ZZ'Z"),p = —E(oq )ae. . _ (18)

Now given the structure of the right-hand-side term in this equation, it is convenient to rewrite the Fourier
amplitudes of the position coordinate and the force in the form

Zop = Xoplap- - (19)

~

(Daﬂ - E‘wagﬁ. (20)

3

In the particular case of the linear oscillator (x = 0), the resulting coefficients Sc'mﬁ and l-foLﬁ are independent
of the agﬂ, and are thus nonrandom numbers; but with x = 0 the situation is different; in this case it follows

from equation (18) that the coefficient iuﬁ depends on the set amplitudes {ag,B in a quite complicated way,
for on substituting (19) there appear products of three a%s containing all those frequencies which combine to
give just @,g, as demanded by equation (17).. Explicitly, and on dividing by the common factor agﬁ, one gets
the set of coupled stochastic equations

o_a", o

. ~ s i 11] a a a e = -
(-miﬁ +|T(Diﬂ +m§)xaﬂ + KZ (E'E Zz )llﬂ = (—u._ﬂ = EE((DC‘-B)' (21)

These equations determine the response amplitudes %aﬁ and characteristic frequencies o,z for the
problem; these latter correspond to what we have termed relevant frequencies.

The solutions of (21) are functions of the random amplitudes ag,,, and thus are in principle stochastic

numbers by themselves; they represent a different set of stationary solutions for every realization of the field.
Here is where we deviate from the original SED approach. We observe that for cerfain random fields there
are solutions to (21) that are nonrandom numbers and thus independent of the specific realization of the field.
These particularly simple solutions occur when the set of equations that determine them contains no random
coefficients, i.e., when all explicit dependence on the a®s vanishes from the equations, which in the case
under study occurs only when the following equality holds for each relevant frequency,

@%a%a%),, = al, (22)

except for a possible constant factor of proportionality (which must be set equal to 1, as was already done
here). For those fields that satisfy these conditions, the characieristic (Fourier) frequencies 0. and the
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corresponding response amplitudes ')Eaﬂ of the stationary states of motion are-essentially insensitive to the

fluctuation of the random variables a°, and hence independent of the Speciﬁc\féaﬁzaﬂon:‘_They are thus
remarkably stable solutions. We propose to consider seriously these solutions, determined by demanding the

frequencies o, to become non-stochastic.

Let us now investigate the consequences of this demand. Firstly, with (22), the system of algebraic
equation (21) reduces to :

~

E(®,p). (23)

(~03p +i0%s +03)%ep + KD KRR ")y = =

whose solutions (i'aﬁ,maﬂ ) are obviously deterministic. A further important consequence is obtained as

follows.

Introducing (19) into (15) we write with the help of equations (17), (20) and (22), in a synthetic notation,

3 — SS S e o e o)t — "'r"'rr"'l”) ( o0 0"') o'+ "+o")t
xX*=>"77"7"% | > xxx) @7 ) e

= Z (Z xR ')aﬁagae“”?-a' =.Z @) e, o (24)

where the element (ie)oqs involves a douiale summation over indices such that (17) and (22) are satisﬂed;rﬂin
the previous shortand notation this reads :

X)ap = (zsz-;";-")aﬁ. | | (25)

The detailed meaning of this and other similar rules involving constrained sums will be discussed shortly.
What should be noted here is that a force which is nonlinear in x has become a linear function of the field

amplitudes agﬁ, as shown by equation (24). This is a most important result: despite ther_ presence of
nonlinearities, the system responds linearly to the field and behaves as a set of linear oscillators of frequency
. and amplitude S'c'aﬂ. We stress that no linear approximation is béing made, but it is the system’s respense

to the field that is linear under the assumed stability conditions, with sharply defined frequencies and
response coefficients determined-by the nonlinear equations (23). This is the reason why we call the present
theory finear SED. ' '

‘To see the meaning and implications of the above results let us use them to recast equation (23) in the
algebraic form '

o~ -~ . 3 ~ -~ R
—mmiﬁxaL|3 = Faﬁ —IMTogsX,s +6E(0yg), - R __ (26)

with I?aﬂ = (‘FE(')'E))0t|3 including of course the nonlinear terms. For the speciﬁc case of the anharmonic oscillator
the force coefficients are given by : :

Frp = —08% o5 — KD EE ) o, : @n

where the (double) sum in the triple product of X must be such that equation (17) is satisfied.

Observe from (15) and (19) that one can use alternatively time-dependent coefficients defined by
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Kop(t) = Ko™, - ' : - (28)

Fap() = Fop explioggt), - | N @
Eop(t) = Ep expliogg), S | (30)
50 that

2
:TZ %op () = —0Z %o (V) 31)

and so on, and equation (26) once muitiplied by exp(ia.st) becomes

daiu.ﬂ (t)

S Xop (1)
2 dta

=P +me +eE (). | 32

This is a set of (nonlinear) deterministic equations of motion for the ?(uﬂ(t); all random gquantities have

vanished from the description, once the fundamental effects of the random radiation field have been taken
into account. We can thus take now the radiationless approximation by writing the above equation to zero
orderin e, ’ ,

X5~
m ’::g(h 0. (33)

Despite its form- this (unperturbed) equation is nof a classical equation of motion, owing to the specific
meaning and algebraic properties of the terms iaﬁ and. Faﬂ-.._ In fact, it is a Heisenberg equation of motion (as

will be shown), with solutions that cémespond te those of the quantum mechanical description of stationary

_states. It is astonishing that -equation (33),.which can be (and is) taken as the fundamental law for the
problem, does not contain any element whatsoever reminding us of its stochastic origin, and no trace
whatsoever of the background field that generates and sustains the stationary solutions.

IIL. THE GENERAL BOUND PROBLEM

We now turn our attention to the solution of the general equation

mx=meX +F)+e> Eape™t 7 - | (34)
k

in the quantum regime, and show that the resuits of the previous section are applicable in generai. For
simplicity, in equation (34) the c.c. terms of the zero-point field have been embodied in the sum, which now
runs over positive and negative frecuencies. Following equations (15) and (19) one writes.

xou(t) = Y BZp0 %" = 3 pX,ga0pe ! - (35)

and introduces this expansion into equation (34), to obtain

-~

-_& Eop  _ 0 ot ) ‘ -
xou = mZBA_(@up)_amaew’ S | | 9
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where

o2+ 10O s
Ao)=o +m ) it . @7

still depends on the random amplitudes. As before, E)(m) represents the Fourier transform of the extemnal
force. We assume that all relevant singularities are simple isolated poles, and that they give the dominant
contributions to xa(t). The system is assumed to behave resonantly at the frequencies corresponding to the
poles; the smaliness of the parameter t entering in the radiation reaction force guarantees the sharpness of
the resonance, so that the contributions from the poles are clearly dominant. For bounded motions, the
equations for the poies A(w) = 0, or

1 2@ _ 2 i® (38)
m. Z(o) b

is satisfied only for certain (discrete, and in general stochastic) frequencies. For instance, for the harmonic

oscillator of natural frequency g there are poles at + wg and - g, but in the case of particles bound by

nonlinear forces, the values of o at the poles will in general depend on the state of metien. Further, since for

all frequencies o of interest |t | << 1, we take the radiationless approximation, so that equation (38) becomes -

1 E)aﬁ(m) _ 2
m3 = Oap-
m Z(lﬂ ((D) 1

(39)

Now we introduce the requirement of nonrandom values for the characteristic frequencies ®qp. The ratio
t'fJaBI'iaB must then be independent of agf,, and equations (35), (36) and (39) lead to "iaﬁ and ('f)ap linear in
a3, so that one can write

~

~ o~ 0 ~ 0 . .
Z“B - Xaﬂaaﬁ, CDU-B = F(J.ﬂactﬁ . (40)

with Sc’aB and Fmﬁ nonrandom coefficients, related by the system of aigebraic equations contained in (39),
namely,

-~

Fap =—MoZpX . T p— | @

>From this expression and the second one in (40) it follows that the Fourier transform of the external force is
a linear function of the stochastic amplitudes; the linear response to the field is thus extended to any binding
external force. It is remarkable that this general property follows as a consequence of the demand of
nonrandom values for the characteristic frequencies o, of the stationary solutions.

Let us now investigate the properties that the field amplitudes ag13 must have for equations (40) to nold. We
assume that the external force can be expressed as a power series in x; this leads to a sum of terms

containirig any number n of factors of Z,,, of the type

zlﬂ»‘t 2121-’«2 an”’n - xl1l-‘1 xlzl*z x?‘-n“naMMalez a?‘-nl-’-n ' (42)
each of which should correspond to a fixed frequency, say Wqp, SO that

>N n 0 /

) I I @3)
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it follows the any product of refevant amplitudes a° must reduce to a single a° so that the product tems
remain linear in'a’,

ay,an,, - a5, =ag. (44)

Of the 2n,ind'ices appearing on the left hand side, two are fixed (o and [3) and n — 1 are summation indices
(due to the implicit 5-functions, as in equation (12)), so that n - 1 indices remain free; but since this product of

a"s should be just the required aﬂb, and not another ihdepende_nf random amplitude, the indices must repeat

themselves (otherwise independent random phases would appear).- In particular, for n = 2 one can write
either

8apl = 8oy ' o)
or
adgaly = a%y _ _ (46)

for arbitrary o, B and p. From the first of these equations we get
al =1 @an

whereas the iteration of (46) to arbitrary n gives:

0 .o 0 _ .0 o ' '
a“ihalh#z o al’-n-1ﬁ =8yp- 48)

With the a”s having constant magnitude equal to 1,
JUNC | | | T e
equétion {48) means that the phasés must satisfy
Pap = Py + Pugsy +++,,_p» Modulo 2 " (50)
and, as follows from equations (46) and (45),
| P =0 Pup = “Ppy, o ' (51)
It terms of the amplitudes, the latter con_'straint implies the relations
al =) = 2.}, . - | | (52)

As follows from equation (17}, the trequencies of the time coefficients corresponding to the a%s will in their
turn satisfy the equality

Dop = Dyy, Ty, F2+0y 5 (53)
-and, in particular,
Dy = Ogp +0pgq- (54)
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Hence with (aa) denoting the field mode of zero frequency (a mode which is actually absent from the pure
radiation field), 0., = 0, the above equation implies the impertant symmetry property:

Ogp = —Dpy- : (55)
which was used in advance in connection with equation (15).

The general solution to equation (50), taking into account (51), is
Pop =P —pp mod 2, | {56)

with go. and ¢p independent random phases uniformly distributed over the interval (0,2m), so thét
Pop = e —@Pf  mod 2m, is also uniformiy distributed over the same interval. Thus the amplitudes have the

general form

agB = ei(W*fPﬁ), (57

which shows that the _statistically independent random quantities are not the amplitudes agﬁ with the

combined index («p), but the single-index phases ga. The characteristic frequencies share this important
property of separability, i.e.,

®op = Qo — O, ; (58)

where Qo are (nonrandom) numbers. One thus gets for the Fourier coefficient of a typical term (i")
corresponding to frequency !

0 v s N3 3 < 0
(in)clﬂaaﬂ = Z Zop Zugsy " Zl-‘n_1B - [Z xﬂ‘Mx”ﬂ-‘z o xﬂn-15]ad-ﬂ e (89)
Hi 1]

where the sum is performed over all allowed values of the (repeated) intermediate indices. One recognized
here the multiplication rule for matrices: .

(in)aﬁ = Ziﬂw il»hl-lz iun_m' (60)
W

so that the solution arrived at is naturally expressed in terms of matrices. For example, iw is the Ap-element
of a matrix X, and so on. )

IV. THE HEISENBERG EQUATIONS OF MOTION

The result just obtained can bé used to write the equations of motion in matrix form. For this purpose, recall
that one may associate the time factor exp(ioagt) of Z,; either with X, as in (28), or with a., (see (8)):

~ o4 - ~
) xaaagae ot = otB(t)agﬂ = Xoplep(1),

where

Xop(t) = X8, a5 (1) = ape ™ 61
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and use whatever expression is convenient in each case. In particular, from equations (33) and (60) one has
in the radiationless approximation

=F(), ' (62)

2-
m 30
dtz

where X(t) and F(X) are now time-dependent matiices with elements Xqp(t) and ﬁaﬂ(i), respectively. To
complete the description we define a matrix p(t) with elements that follow from the time derivative of equation (28),

Pap(t) = iMo, X, 1), (63)
or in matrix notation,

dx

p=m 64
P=my ©

This definition is suitable for making contact with quantum mechanics, which is a zero-order theory as
regards the radiative terms and hence unable to distinguish between the mechanical moment and the
canonical moment with respect to the zero-point field (recall equations (32) and (33)). Combining with

equation (62) it fellows then that

dp '
&t = F(%). (65)

Equations (64) and (65) are evidently the Heisenberg equations of motion, and iaﬁ (t) are the elementary
oscillators of matrix mechanics. The matrix algebra of quantum mechanics follows therefore as the algebra

that guarantees stable, nonrandom values for the characteristic frequencies of the statfonary SED system in
the radiationless and long-wavelength approximation.

V. THE SCALE OF QUANTUM PHENOMENA

Observe that'the above equations of motion (64), (65) do not yet fully determine iaB and . In writing the

stationary solutions (39) in the form of (35), only the positions of the poles were taken into account, without
ever really solving the equation (34) which contains the full information, and, in particular, fixes x(t) in terms of
Planck’s constant. This means that we have to come back to the equatmns that describe the complete SED
system before the radiationless approximation is made and the zero-point field is dropped altogether, in order
to fix the scale of the solutions.

Instead of dealing with the complicated original equation of motion, however, a simpler procedure can be
used, observing that what is lacking in the above formalism to complete the full system of Heisenberg

equations is the vaiue of some fundamental commutator, such as, e.g., [5(, |3]. This is not the place to enter

into details, which requiere a lenghty consideration, so we refer the reader to the cited references and content
ourselves here with a sketch of the procedure and the final result. The basic idea is to consider the translation
into the above language,. of the fundamental Poisson brackets of the original theory. !t is possible to
demonstrate that in particular, the SED Poisson bracket X;,pj|= &, transforms in the new language into

~ h .
- PogfFes] = o (66)
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This result can be identified as the Thomas-Reiche-Kuhn sum roule of quantum mechanics, which is' just
the quantization rule [)"(,;3]: it expressed in terms of matrix elements. It is through this (and similar) resuits
that # enters into the scheme.

Now we take advantage of the separability of o,z expressed in e éauation (58}, to write
Xop = 10,pXap = (00 = OPYXop = —1 D (X, OPB,p — Q01 5, Xorp) 67

which can be recast as follows, with H the Hamiltonian of the mechanical system,

ih Xop = 3 1ol — HopXop), | (68)
whence a comparison gives

Hop = 708, . : (69)

This result shows that the matrix representing H in the present formalism is diagonal, which means that Hq@_, -
is not random, ' e

Ha = )" pH,,a,, =iQua,, = iQa, ‘ (70)

and further, that the Qo introduced via'equation (58) is proportional to Ho., identified in quantum mechanics
as the energy of the particle in state «,

80.E(H0L)=H0L=h§lon. | {an
>From this it follows that equation (58) is Bohr’s formula for the transition frequencies,
hargy =€ —€EB. ' (72)

Hence the characteristic or relevant frequencies of SED coincide with the transition frequencies of quantum
mechanics. Analogously, from the above relations it follows that the response amplitudes ')'E043 are the
transition amplitudes of quantum mechanics.

VL HILBERT-SPACE FORMALISM
A correspondence has been established between the description of finear SED and quantum mechanics,
via the Heisenberg equations. Now it is a relatively easy matter to further develop the new description, until a

direct contact with the usual Hilbert-space formalism is reached. As a praclical means to achieve this we
introduce the a-representation, as follows.

Consider a set of square matrices a*?, each of which has only the element ap different from zero,
6%}, = 2ugBaydp. 1)
The coefficients a, = a.4(t) are given by (57) and (61); thus,

Bup = g 0o %l _ oi(ou-gP)+i(0u-OF)' _ gHpu-Cotg-ilop+p) (74)
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Note that the eff—dlagonal elements have random phases, whereas for o= B the phase is zero. A product of
two of such matrices gives, as follows from (73) and (74)

(5:"*‘:31‘1“)pw = 858 0,8y By = 8y (A )y (75)

The fact that this product differs from zero only for B =y makes these matrices especially suited for the
present purposes, for they can be used as a basis to write the matrix representing an arbitrary dynamical
variable. For instance for the variable x we write

k=3 %Ki =3 o, " (76)
oA

where )

Xo. = Z AX 52" an

the matrix elements of X are then just X, = X,,8,,. Then from (75) and (76) one gets for instance for the
square of X

(;‘(2),,\, =Y AKX 808, = (322 T - (78)

4

The matrix x* is thus again a linear combination of the a's, with coefficients (Scz)w =D AKXy

Consequently the operator X reproduces the matrix properties which the variable x must possess accordirig
to the discussion above. The same applies of course to any other observable, which means that it applies to
any variable in the quantum regime that can be expressed in the linear form (35).

Now observe from equation (74) that the matnx a°? can be written as the product of two vectors namely,
column vector | o) of the form

0 0
Q 0 _
wy=| ¢ ||+ aa . - @9)

and a row vector (B] which is the adjoint of |B), (B| = ﬂﬂ))ﬂ and is given by

(ﬂ|=(0 0 . ap* -)=@0 0 - 1 .ap (80)
with .
ao = ei(Px+oa) | | (81)

These vectors have as a many components as there are different indices «, which normally means a
{denumerable) infinity of them. The only element of |a) which is different from zero is in row o | i.e., (Ioa))?x. =
aady, and therefore

aoap*=a, . (82)
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is agreement with equation (74). Finally, from equations {73) and (79) follows the factorizéti__on rule
&% =|o) Bl | (83)
The vectors |(x) form a complete orthonormal basis, as follows from the equations

(OL|[3)=8“‘3, Ea|a)(a|=2aﬁ““=i. _ | 4

They thus span the Hilbert space of the states of the system, and an obsewable f can be represented by
any one of the following expressmns

f:Z or.foc=z Af;ﬁéaﬁ =Z iﬂl“)(ﬁf' o
o, B .

o,p

with

fop =/ F[)- (@6)

In particular for the Hamiltonian we have, as follows from (70),

FI:Z ot Hy, @™ =Z aofor){o| . ' (87)

It is interesting to note that the vectors |y do not involve the o3, but the quantities €« /#i =Qo; the
transition to a Hilbert-space formulation in terms of bras and kets has had the effect of shifting the accent
from the relevant frequencies to the energy eigenvalues for the stationary states, and from the field
amplitudes a,g to the vector elements aa.. The proposed mathematical transformation has thus changed the
conceptual framework into an entirely different one, in which the main objects are vectors in a Hilbert space

random phases that remaln hidden in the usual Hilbert-space formulation.

In the a-representation the dynamical equation take the form (see equations (61-66))

& . dp -
—_ =P, — =F
@ " & - @8)
and
[x.6]=in1. 89)

Once more the time dependence can be attributed to X by the writing Ziuﬁ {)a®?, orelse to @ by writing

Zimﬂé"‘p(t) and usir_:g equation (61). The passage from the first expression to the latter is equivalent to a
transition from the Heisenberg to the Schridinger picture.

VH, CLOSING COMMENTS

At this point it is approprlate to comment bneﬂy on some of the features and implications of the theory just
sketched.

The characteristics of the self-consistent sclution show that the coupling between the atomic processes and
the field due to radiation, generates in the long run phase comelations between the components of the
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neighboring field, and between this field and the atomic motions, as was anticipated by Theimer and
Peterson. The method followed, though obviously successful, has the important shortcoming that the self-
consistent solution must be accepted as a matter of fact. It is quite clear that without the use of an auxitiary
principle or hypothesis it would have been impossible to identify the solution, due to the high complexity of the
mathematical problem. The central question of deriving the solution from first principles remains open.

As already stated, an exact and detailed solution of the full problem would not lead to the present
description; this is only reached after performing a series of approximations and simplifications., In the
transition to such an approximate theory, some attributes of the starting description, as that of being
genuinely statistical and local realistic, become much weakened and adopt their quantum guise. This can be
identified as the main reason for the difficult interpretative issues characteristic of the quantum description. It
is here in particular where we find an explanation to questions such as why the quantum formalism gives an
incomplete and seemingly noncausal account of the behavior of mechanical systems: guantum mechanics
appears from the present point of view not as a fundamental theory of matter, but as a derived, approximate,
asymptotic theory. And approximate physical theories may not satisfy the same rigorous requirements that
fundamental theories are supposed to fulfi); this is particulary true in regard to consistency with first
principles.

Even if still unfinished, the theory presented allows already for a certain reinterpretation of some quantum
issues. Of special interest is the finding that quantum operators such as %, p and so on, should be interpreted

as referring not to a single particle, but to the subensemble constructed through the coarse-graining process,
and then in a highly abstract form, distant from any direct empirical meaning. The present theory is as
intrinsically nonrelativistic as it is intrinsically statistical, and quantum mechanics inherits these peculiarities. In
particular, the extended belief that the quantum variables can be readily identified with those describing the
individuals, and with a meaning directly suggested by their classical Counterpart, is not supported by this
theory. Also, the fact that the theory is not constructed around the notion of trajectory, does not mean that
individual trajectories do not exist, nor that the possibility of constructing a space-time description is cancelled
forever. Simply, neither the present formulation nor quantum mechanics are such a theory. _

Although the basic equations for the linear SED system in the quantum regime are stochastic by nature,
they have been recast in nonrandom terms, which happen to be just those of matrix mechanics. In such a
cryptic description (in terms of the Heisenberg equations of motion) the elements responsible for the
stochasticity ~the field amplitudes aq5- have vanished completely, resulting in a seemingly fully deterministic
picture. This simple observation explains by itself much of the enduring interpretative problems of the usual
quantum mechanics.

A question that invites us to indulge in further speculation refers to the possibility that under certain
circunstances the system responds with random frequencies (as would be the case if the demand of detailed
balance were removed), in which case the situation would be more chaotic than the one represented by usual
quantum states. It is clear that for this to happen the system must leave the quantum regime, but it is unclear
whether such a process means merely a return to a classical (stochastic) behaviour, or whether some new
behaviour arises.

REFERENCES

1PEI‘\’IA,. L. de la, and AM. CETTO (1996): “The Quantum Dice, An Introduction to Stochastic
Electrodynamics”, Kluwer Academic Publishers, Dordrecht.

- . 7_ (1995): Found. Phys. 24, 917 (1994), 25, 573.

*THEIMER, O. and P.R. PETERSON (1977): Phys. Rev. A. 16, 2055.

\

24



