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1. | will present a new approach to perturbation theory for renormalizable quantum fields theories (QFTs)
which gives renormalization scheme (RS) independent predictions for observable and other quantities of
interest (eg. Green’s functions.) The resulting REnormalization Scheme Independent PErturbation theory
will be called RESIPE for short. | wili illustrate how RESIPE works for a renormalizable QFT with one
dimensionless coupling constant (see ref. 2). Applications of 2nd order RESIPE to some specific physical
measurables, for massless QCD, are to be found in ref. 3. Generalization of the RESIPE formalism to
QFT's with masses and more than one coupling constant and its connection with the renormalization
group (RG) formalism is given in ref. 4. Here, in addition, a new scheme independent perturbation
expansion, without reference to RG techniques, is given which is valid for the general case with masses,
several kinematics variables.and more'than one coupling constant. These and references 5 and 6 may be
consulted for more detail. :

2. RESIPE Formalism for a Renormalizable QFT with one Coupling constant. Consider a QFT wich is
renormalizable and has one dimensionless bare coupling constant gy (eg. QCD). For simplicity, consider
a physical quantity wich depends on only one external energy scale Q. Corresponding to it one can
always construct a dimensionless measurable quantity R, such that its regularized unrenormalized
perturbation expansion is of the form -

R =g +1;083 +o8g + - 1

Here the bare couplant a, = g3/ 4n° and the subscript "0° denotes bare or unrenormalized quantities. The

bare perturbation series is not well defined since the coefficients of expansion are infinite. In a renomalizable
theory finite results are extracted by absorbing the infinities in the base parameters (coupling constants,
masses, etc) and the fields present in the Lagrangian. The definitions of the renormalized fields and
parameters in terms of the corresponding bare quantities are, however, not unigue because of the posibility of
finite renormalizations. After renommalization, since the measurable R has no anormalous dimensions,
equation (1) becomes

R=a+ra’+na*+ -, ' 2

where the renormalized couplant a = g° / 47 and g = renormalized contant. The coefficients r,, are finite but
their values depend on the RS used to define g. Consequently, finite order predictions for R in the
renormalized procedure gives predictios for R which, although finite, are still ambiguous. Can this problem of
RS-dependent perturbative predictions ( present for all QFT’s) be solved? Does the fact that the perturbative
predictions base on equation (1) or equation (2} are not well defined mean that R itself is not directly
computable in the theory, but instead the theory predicts some function f(R) of R uniguely? How and in what
form does the theory determine f (R)? RESIPE provides the answers. We will see that for a renormalizable
QFT with a single dimensionless coupling constant g, the theory, at best, determines the Q dependence of R
through the differential equation.
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The last term expresses f(R) as a series in R with finite RS-invariant coefficients fy, fi, ... . Each term in this
series is RS-invariant and therefore so is any finite order truncation. The convergence of perturbative
approximations to f(R) is nowcontrolled by magnitude of R itself. For practical applications, one may
approximate the r.h.s. by the first 2 or 3 terms if If, R"| << 1 for n = 2 or 3. These would give the second or
third order RESIPE prediction. Since these finite order predictions. are RS-independent, their confrontation
with eperiment provides an unambiguous probe for higher order corrections.

" 2a Determination of RS-invariants f!s. Since the coefficients r,, depend on Q through the regularization

scale (eg., an ultraviolet cut off), equation (1) gives

o
aQ’

)

R’ =rja3 +rjas +... ) e =Q

Efiminate ay between equations (1) and (4) to express R" as a in series R and compare with equation (3).
Or equivalently, substitute ’equation )] in equation (3) and compare the resulting series in ap for R” with
equation (4). The resuiting expressions for f,’s in terms of r'p and r o are given in equation (6) below.

Since the theory is renormmalizable, one can start with equation (2) to obtain

4
o
aQ’

R =ra’+ra*+... r=Q (5)

Manipulating equations (2), (3} and (5} as indicated above yields expressions for f, s in terms of r, and r's.
Note the algebra is the same whether one starts with equatlon {1) or equation (2). Thus, we find:

~fo =ro =11, 6.1)
—fofy =50 — 2rghp =12 — 2141, . : (6.2)
- fofz = réo - 3I'éol'1° - 2r1'0r20 + sr-ioﬁzo = !'é - 3rér1 - 2I'{I'2 + 5I'1’I'12, (6.3)

etc. Since ry and r'y are RS-independent, while r, and r, are finite (by definition) equation (6) proves that f,
are both finite and RS-invariant. These properties for the f,'s are, in a sense, obvious from equation (3), since
both R and R’ posses these two properties being measurables. Note that f,, f,... etc. can be directly
calculated from the combinations of the bare series coefficients (in equation (6)) without having to renommalize
them. The finiteness of f,’s is guaranteed by renormalizability of the theory. Note that f; and f; are universal in

the sense that they are independent of the process under consideration. Of course, f,, n > 2, do depend on
the process, that is R, though this has not been explicity indicated in equation (3) for notational simplicity.

2b Testing RESIPE. Equation (3) requires the knowledge of R at some Q = Qg (which has toc be obtained
from experiment) to predict it at any other Q. This boundary condition on equation (3) provides the process
dependent scale Ag for R to have a non trivial dependence on Q. Dependence of R on the RS-independent
scale Ar (undetermmined by the theory) is consistent with the fact that the starting Lagrangian contained the
undetermined parameter go. The dependence of R on the dimensionless g has now appeared, by

“‘dimensional transmutation” (ref. 7), through Ag. In RESIPE different physical quantities R, R, wil
automatically have scales Ag, Az --- which are specific to them. Does that mean the theory has many
independent scales? The aswer is no (ref. 2). For the massless case, one can integrate equation (3) for
process R and the corresponding equation
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for the process R'=a +Ta? +-.-, since the RS-invariant f,’s and i's are constants independent of Q. One
can show that the two scales Ag and Az are related:

Az = AR exP[fE (%o - '"10)] and Ag = _AEXP{fo_ 1(r1)p.=Q]l C))

where A is the usual RS-dependent scale parameter and p is the renormalization point. Note r,’s and r’sare
functions of Q/p only and T, -1 =% —1;. To test the theory using RESIPE one can extract Az and Ag toa
given order and see how well Equation (8) is satisfied. Alternatively, one can compare the value of A obtainéd
in the two cases.

CONCLUSION

The central idea of RESIPE is to use some observable quantity as the perturbation expansion parameter
instead of the usual RS-dependent coupling constant, as is normally done in conventional renommalized
perturbation theory (CRPT). This central idea can be implemented in different ways depending on the
techniques used (ref. 8). RESIPE can be considered as a full-fledged RS-independent substitute for CRPT.
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