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ABSTRACT

The semi-classical phase structure of two-dimensional QED and QCD are briefly reviewed. The non-
abelian theory is reformulated to closely resemble the Schwinger model. It is shown that, contrary to the
abelian theory, the phase structure of two—dlmenswnal QCD is unaffected by the structure of the theta
vacuum. We make parallel calculations In the two theories and conclude that massless Schwinger
model is in the screening and the massive theory is in the confining phase, whereas both massless and
massive QCD are in the screening phase.

1. INTRODUCTION

Massless Schwinger modet is an exactly solvable theory [1]. The phase structure of this theory has been
studied extensuvely it is well-established that the theory is in the Higgs or screening phase. On'the other
hand, massive Schwmger model is not an exactly solvable theory. Nevertheless, it has also been studied
lntensely and it is known that, under certain approximations, the theory is confining. There are various ways
of establishing the phases of the Schwinger model. A rather simple method, which are shall demonstrate
here, is to use the bosonised version of the theory and introduce external probe charges into the system. For
a semi-classical theory, the intercharge potential binding the test particies can be easily computed.
Classically, the Coulomb potential is.expected to rise linearly with the inter-charge separation. However, in
the bosonised theory, vacuum polarization effect can shield the probe charges. As a result, in the massless
Schwinger model, the confining Coulomb interaction is replaced by a screening potential. The massive
theory, on the other hand, survives the polarization effects and is in the confining phase.

The same method can be applied to two-dimensional QCD [1]. Although an exact bosonisation formulae is
not available for the non-abelian theory and the available bosonisation methods are perturbative in the mass
parameter [9}, the technigues developed for Schwinger model can be used to infer informations about the
phase of two-dimensional QCD. We introduce external probe colour charges into the theory and evaluate
their inter-charge potential. Unlike two-dimensional QED, both the massless and masswe non-abelian
theories are in the Higgs phase. -

2. SCHWINGER MODEL

wve start with the lagrangian for two-dimensiona! QED [4],
1 . ‘
L= -EFWF"’" —-yliy'o, —ey"A, ~mhy. ) (1

This lagrangian can be re-written in terms of the bosonic variables, by using Mandelstam bosonisation
formula [8]
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The bosonised lagrangian is,’ e L
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where y is a normalisation constant [7]. Next, we place external probe charges q and —q at L/2 and -L/2. For
the purpose of evaluating the inter-charge potential, it suffices to restrict ourselves to static fields (i.e. & = 0).
The static lagrangian, incorporating the probe charges, is

L= (@4A0)* ~ 2 ()" + mPylcos(2) 1
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The equations of the motion corresponding to the above lagrangian are

20 +ad(x—L/2)—8(x+L/2))-32A, =0 @
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The equation of motion of A can be Entegrated to give an expression for the scalar field in terms of the
electric field E (&, Ag), i.e.,

= ij—[amo ~q(T(x-L/2)-T(x+L/2) o, | g

where T is the step function and o is the integration constant®. This can be inserted into thé equation of
motion for ¢ to yield, : : .

#E-CE-Bqr-7 —ZJf_cmzysin(Z«fEE—gE) =0 (10)
where
E=1§[E—q(T—-T)], (11)

8 = 2na/e is the theta vacuum and (T — T) denotes (T(x — L/2) - T(x + L/2)).

In order to obtain the potential binding q and —q, we solve the above equation to first find the inter-charge
electric field. The equation can be solved for two different cases: when the dynamical fermions are massless
and when they are massive.

! Uniike the original tagrangian (1), the bosonised lagrangian does not describe a purely classical system. In the bosonisation procedure,
one takes into account the vacuum polarization effects by evaluating the contributions from the one-loop vacuum functionals.
* Note that in four dimensicns, this integration constant is zero. However, in two dimensions energetics allow for a non-vanishing

background electric field [6].
35



2.1. Massless Schwinger model

For massless dynamical fermions, the equation of motion for E (10) reduces to
FE_FE_© qr-T-0. (12)
% Jx

This equation is exactly solvable and its solutions are

E =a exp(_—ﬁ xJ, X >% (13)
E“=bexp(% J _ x<% (14)
Em=cexp(—T:xJ+dexp[%x]+,[:—q, _—2L~<x<% (15)

" The solutions and their derivatives can be matched at the boundaries to easily obtain the unknown

coefficients. Having obtained ﬁ, we use the expression (11) to obtain the electric field. The inter-charge
potential V(L) can then be simply obtained by integrating the electric field over the inter-charge separations,
ie., S

' /2 2
VO =-af, | Eux= qu (1-evs) - (18)

The expression for the inter-charge potential shows that for small inter-charge separétior-\ms; the potential
risess linearly with L, as is expected from a classical coloumb potential. However, as the inter-charge
separation is increased the polarization effects set up* and lead to the screening of the probe charges. For

very large inter-charge separations, the potential eventually reaches the constant value qz_{/E /2e .

So far, the charge of the probe particles has not been specified. Therefore, even the screening of the
fractional probe charges by integer dynamical charges is allowed. This Is puzzling since one would expect the
confinement to prevail in such cases. The situation can be clarified by evaluating the conserved charge Q

associated with the integer dynamical charges: This charge is given in terms of the conserved current o:¢,
i.e.,

Q={"dx3¢. (7
Xt .

To unravel the mechanism of screening, we consider the screening of one of the probe charges and
evaluate the conserved charge along the axis from 0 to <o (i.e., a solitonic configuration.) That is,

Q =¢(0) - $(0) = -q. (18)

3 This can be shown to be equivalent to evatuating the change in the hamiltonian caused by the probe charges (see [5], Chapter 10}
4 Recall that we have taken into account the polarization effects in the bosonisation scheme. In replacing the original fermionic lagrangian
by the bosonic lagrangian, one incorporates the cpntributions from the one-loop Feynman diagrams in the bosonic action.
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This shows that although the dynamical charges are of integer values, the charge associated with their
solitonic configuration can be non-integer. Specifically, this charge is opposute to the charge of the probe
particles and accounts for the shielding phenomena.

2.2. Massive Schwinger model

For massive dynamical fermions, the Schwinger model is not exactly solvable. The eguation of motion (10)
is non-linear and can only be solved after expanding the sine-terms® . In this approximation, the equation of
motion (10) reduces to

el 2 -~
5,E- {% 4ﬂm2«,]e - (% q(T-T)+2«/Em276J =0 (19)
P t

This equation resembles (12) for the massless Schwinger model and can be solved in the same manner.

By using the expression (11) relating E to the electric field, we obtain the electric field and subsequently the
inter-charge potential. This is now given by

VL) = et . [1 _ eﬂﬂ(ezfmﬁmmzy)L)
2n(e?/n+ 4nm2-y)A
L T [q—e—e)L : | (20)
2 e? +4n’m?y) n

Therefore, for the massive fermions, the inter-charge potential has both a screening and a confining temm.
However, for long separations the confinement term dominates. In addition, for integer probe charges and for
@ = n a phase transition ocurrs; the confinement term disappears and the screening phase is restored. This
can be explained by recalling that the theta vacuum, which was introduced in equation (8) as an integration
constant, is basically a non-vanishing background electric field. As the theta angle is increased, pair
production sets up helping the screening of the probe charges. This continues until the net electric field falls
below the threshold required for pair production. This circle repeats itself and therefore the dynamics of the
systemn is a periodic function of the theta angle.

2.3. Two-dimensional QCD

in the preceding sections, we have studied the screening and confining phases in two-dimensional QED.
We saw that although massless Schwinger model is in the screening phase, the massive theory exhibit
confinement. In this section, we ask the same question for two dimensional QCD and examine whether the
conclusions drawn for two-dimensional QED can be generalized to its non-abelian counterpart.

The action of two-dimensional QCD is -
$= [ [——+trF F 4 (257 — eAT) ! - mai %] , @1)

where i, j are the usual colour indices and f = 1,....k is a flavour quantum number. Unlike the Schwinger
model, for which an exact bosonisation scheme (3) exist, two-dimensional QCD cannot be exactly bosonised.
However a perturbative bosonisation scheme by means of which the massless theory is first bosonised and
the mass term is introduced and bosonised perturbatively exists [9]. Writing down the generating function for

5 The validity of this approximation can be checked by evaluating the argument of the sine, using the approximate solution for the electric
field. One verifies that, for a targe mass to charge ratio, the argument of the sine is much smaller than n/4. Thus, the expansion of the
sine term is only meaningful for m >> e.
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the above lagrangian and integrating out the fermions in the path integral measure leads to the weil-known
Wess-Zumino-Written action '

Seq §Zr19,|~(c, +K)[E]+ kO[B]+ Sy

+m? J'dzztr [Z (g,:"ﬁ +g,“z[3‘1)} . (22)
) f C .
where
S = dzz[%(amo)z +AAo(" m)}, (23)
gl = I %tr(apg*a”gﬁ I % P tr@“aagg“aagg”avg), (24)

the light-cone coordinate is. x*, A = Ee—(cv +k) and c, is given by ¢, = = £,,.f™ which vanishes for the
.,, .

abelian group®. The g field is the gauge-invariant bosonic field corresponding to the original fermionic
excitations. The field T is a negative-metric field and the fields B and Ag are the massive sector fields. The
equations of motion corresponding to this action are

00057 -mos - pzg). 1ot @)
_ (%;Q 2, (za,z-')=m2r2;j (eoi*" - pg,=), | (26)
- 4—"“-3_ 62.8)+0,p.A,+ir0,A, = ng o= -p"sg,), | @n
32A, =M "i0,p). 28)

Unlike the Schwinger model, where the equations of motion of the bosonised theory, (7) and (8), were
given in terms of simple scalar fields, all the above fields are matrices. To obtain a set of solvable equations,
we parametrise the matrix-valued fields and rewrite them as elements of the gauge group. That s,

g=6"" ET=g M, p=gbx (29)

where the fields ¢, n and £ afe scalars o, and is a generator of SU(2) group’. Rewriting the iagrangian (22) in
terms of the above variabies, introducing external colour probe charges q°, with fixed colour charges a, and
taking the staticr limit (6 = 0), we obtain the equations of motion

¢ = 8nm?sin(p+n +L), (30)

€ We shall make frequent use of this limit and make parallels with the Schwinger model by taking the limit c. — 0,
7 This simple parametrisation can be easily extended to SU(N).
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52 = 8m*< _, 31)

.17 sin(e+n+C),
o = 32A, = & +1)q (G(x-L/2)—8(x+L/2)}-r8, o (32)
E—mazc+%sm(¢+n+q)— . B | | | (33)

The integration constant o arising from the integration of equation (32) can be interpreted as the
background electric field, i.e., as the theta vacuum; 6 = (2ro/e) (see equations (9) and (10) of the Schwinger
model for comparison.)

By making the substitution ¢ = ¢ + n, the above four equations are reduced to the coupled equations,
5%E = 4m)\’E + 8rm?sin (¢ +E+ %J

- 25g7(c, +1)(T(x-L/2)-T(x+L/2)), : ' (34)

4

2, Bnmzcv . e
0 ¢_{—c 1 ]sm (¢+E+k)’ _ (35)

v

where E = —a /% and E = -AE + 2 7142 (T - T) (similar to (11) of the Schwinger mode).

3. MASSLESS QCD

For massless dynamical fermions, equation (34) simplifies to
0’E - 4mE + 2q°A(c, +D(T(x-L/2)- T(x +L/2))=0. (36)

This equation is similar to the e'xbression (12) of the Schwinger model and can be solved by the same
techniques. The inter-charge potential, obtained in the fashion of the Schwinger model, is

—(c,+1)el

a2 :
va_)=i‘it-‘*;_)eﬂ 1-e & | , @a7)

Thus, massless QCD exhibits screening. It is worth mentioning that the screening ﬁotgntial of the
Schwinger model (16) can be easily obtained by taking the limit ¢, — 0.

4. MASSIVE TWO-DIMENSIONAL QCD

The massive equations of motion, (34) and (35), are not exactly solvable We first expand the sine term and
solve the coupled equations for the field ¢. The quartic equation for the field ¢ is
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c, +1

The electric field can be obtained from the solutions of the above equation by using expression (35) and the
relation between E and E . Subsequently, the inter-charge potential is '

y = ey +1)a”
2

42 -m? ) (1-e™t m? -4m? Y[1-e™t
x s + — , (39)
m+ - m_ r“+ ITI+ - m_ m_

where the mass scales m,, arising from the solutions of the quartic equation (38), are given by

viL

4
m§=2n[x2+1+- S szz]

L ic\, +1i

¢ 2
+2n| 132 +] 14 -Cv |2m? | -8 S a2m? 40
" \[[ +\ +icv+1i] ic‘,+1i _ _( )

The expression (39) for the inter-charge potential contains no confining term. Thus, massive QCD is in the
screening phase. The confining potential of the massive Schwinger model is obtained by taking the limit ¢, — 0.
In this limit, the mass scale m_ goes to zero and we recover expression (20) of the Schwinger model for 6 = 0.
We also observe that, unlike the Schwinger model, the theta vacuum, i.e., the constant « in (35), does not
appear in the expression for the inter-charge potentiat. Thus, the phase structure of the non-abelian theory is not
affected by the values of the theta angle.

5. CONCLUSION

By a simple semi-classical treatment of two dimensional QED and QCD, we have determined the phases of
these theories. The intreduction of the mass parameter in the Schwinger mode! causes a transition from the
screening to the confining phase. This transition does not ocurr in the non-abelian theory where the screening
phase prevails. It is worth mentioning that similar analysis were recently done in higher dimensions {2]. It has
been shown that both massless and massive (for very large fermion masses) three-dimensional QED and in
the screening phase [2].
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