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ABOUT THE MOTION AND THE EQUATIONS
OF A POINT PARTICLE WITH SPIN
(POINT STRUCTURAL PARTICLE)

E. Entralgo, B. Cabrera y J. Portieles, Instituto Superior de Ciencias y Tecnologia Nucleares
L INTRODUCTION

Starting with the work of Schrédinger [1), there have been many attempts (see for example the work [2]) to
construct a classical theory of a point-spin particle. The main difficulty of these models [2], is that the notion of
spin is introduced in mathematical formalisms together with other “hidden” variables which have no explicit
physical meaning. Besides, in the models mentioned in [2], either the particles are not point objects, or the
theory can be called classical only formally. In the papers [2, 3, 4] the theory of the point structure particle
(p.s.p.) was developed, that is, a classical theory for a point particle with spin, and other variables that have a
clear physical meaning. !

in the present paper, after a brief review of the general theory of p.s.p. in stationary fields, we present the
generalization for non stationary fileds, the spin-orbit interaction in the one body problem, the spin-spin and
the spin-orbit interaction in the two bodies problem and the motion of a neutral p.s.p. in some concrete
external stationary fields.

IL PHYSICAL QUANTITIES AND EQUATIONS OF MOTION FOR A p.s.p. IN STATIONARY FIELDS

In works [2, 3, 4] the concept of p.s.p. as a cluster of point subparticles with masses m; charges e,
coordinates g;, linear momentum p; =mq;,was introduced. This cluster in the presence of external

gravitational, eiectric and magnetic fields, with potentials §(F), (F),A(F) and respective intentisities:

G = —V§(r), E = V() and A = ¥ x A7), is described by the system of equations:
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*where W is the potential energy of interaction of the point subparticles, and it is related to the intensities of the
external fields in such a way that the confinement condition is fulfilled, i.e.:

Ay - B ] <1, 1 () - Ticlto) <l (3)

- forany j, k, t; and t > t,, where |; is a small inaccessible, for the direct experimental cbservation interval of
length. :
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Conditions (3) impose limitations to the intensities of the externai fields and the structure of the confinement
potential. As it will be seen, in certain conditions (for exampte for magnetic and gravitational perpendicular
fields), the length of the p.s.p. growth up, and for a time t = 1y condition (3) ceases to be fulfilled, and in this
way it is possible to explain the disintegration of the p.s.p.

The condition (3}, from the point of view of macroscopical observation, allows us to consider the p.s.p. as a
point object with mass m, charge e, coodinate of the center of the mass g and linear momentum p:

m=>"m; e=> e c'i:Z(mjlm)a, and 5:25,-. | _ @

In papers [2, 3, 4] (for details see [4]) was shown that, with the help of the small parameters |, and Z = max
Z;, Z; = efm; — e/m, it is possible to obtain from (1) and (2) a closed system of equations for 15 independent
variables that describe a p.s.p. as a whole, where appear 6 constants that also characterize the p.s.p.: the
mass and the charge from (4), the giromagnetic factor g, the proper frequency o, and other two related with

the former ones, x = » Zfm; = ic? = 4mc?(g—g,)? and; g, = e/2mc where the length I, in the case of the
electron, coincides with the so called “classical radius’. The 15 independent variables are; the coordinate and

the momentum defined in (4), the dipcle moment d, the dipole speed f=d , and the spin é, defined as
d=Y ek, T=Yef S=35-(dxf)/x where £;=4d;-§, | (5)
. Ll

and s = ijéj x Ej is the proper angular momentum. The system of equations are given by:
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and the energy (with accuracy of a constant terms} is:
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It is easy to verify that the closed system of equatlons (6, 7, 8) with (9) lead exactly to the conservation faw
* of the energy. It is also possible to verify that S = const. In the absence of magnetic fields, and S? is an
‘integral of motior? in stationary fields. If we put d=f=8=0 . the calssical equations for a point particle (p.p.)
are obtained. This means that our theory obeys the “correspondence principle”. If we put d=71 =0, with S =
0, the classical equations of the quantum Pauli theory are obtained, from which it can be seen that g is the
giromagnetic factor and Sis the spin. It is important to remark, that considering d= 0, means that W =0, and
this is not in accordance with the 'conﬂnemen_‘t condition (3). In other words, this model requires that d = 0 if
S=0. '

III. GENERALIZATION OF THE THEORY OF THE p.s.p. FOR NON STATIONARY FIELDS,
THE SPIN-ORBIT AND SPIN-SPIN INTERACTIONS

For non stationary fields in the starting equations of motion (1) the intensities of the external fields will be
time dependent. Repeating the previous procedure we obtain the closed system of equations (6, 7, 8), but
with time dependent intensities of the external fields. For the variation of the energy in time is obtained the
following expression:

2
i{pmp“'“”‘i—gs Ho - L gg-g5)8, T g +m—°"“d“}=

dt 2x ;e o 2x
aZ[G +2E ) a(e +2E )
oL o o o d
=P me+eEa+iE-‘idB+—1— M Ldyd, b+ B, + T /0 (10)
m 2q 2x a0, g K

Is easy to verify that: if we put d=f=8=0 in (10) and in the equations of motion we obtain the equations
for point particles in external non stationary fields. When the external fields do not depend on time, the
equations of motion become the equations for the p.s.p. in external stationary fields, and from (10) is obtained
the correspondent expression for the energy, with the correspondent law of conservation of the energy. For
the spin are fulfilled all the considerations of the previous section.

To introduce the spin orbit interaction in the one body problem, we will consider that in the presence of an
electric field with potential o(r),there is an additional specific interaction between the subparticles of the

p.s.p., then the Lagrangian is:
q q . i Cone e (. .ooefg ). o~
L= Z[ I/ (qj)]-w-w,where.W=Z§(qjg—qﬁ—wﬁ%}qﬁ¢(qj) (11)
i

In this case is convenient to select as independent canocnical variables:
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= dKF+ where P, - (12)

— 0q;,

Repeating the procedure we arrive to a closed system of equations for these variables, with the
Hamiltonian:

PP 2 dd, 2
Ho2o FoFy 054 4 +e¢+dﬁa—q)+f— %, e 1 &{{1—3—}FGCP+

2m 2k 2k PP 8g, m 2« 8qgdq, 2¢* m mk
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+ S +2C S . 13

CO&pq " 3q, [Q(Q go)s\,m v—-03 ” J ” aqﬂaq,] (13)

U . Ze
The term Hgg = ch S-[V(pxP] for a Coulomb potential ¢ = ﬂ,le., Hgo =— geiz S L is the spin orbit
2me r 2mer®

interaction. This result is valid not only for electrons but also for other particles and nucieons, as g is a proper
characteristic of the p.s.p.

We can also check the conservation laws of the energy and the square of the spin.

In the two bodies problem we have two clusters of classical point subparticles with masses
Myj, My, ChArges ey;, ez, coordinates Gy, Gz, and linear momenta py; = MyGyj, P2k = MGz, that are at such

a distance, that their confinement potentials W,( Qg — Qg e ) and Wz(-u,iiz.: - Qg ) act only over the

subpartlcles of each p.s.p., i.e., the coordinates of the subparticles of each p.s.p. obey the relations (for any j,
ik, k'and t) .

|€l1j - a1§'(t)|5 lot, 1azk(t) ~ Q¢ (t)‘S loz, and |a1j(t) - G (t)| > o1 +loz-
where |, and |, are small inaccesible, for the direct observation, intervals of lenth.

The electromagnetic interaction between the subparticles of each p.s.p., considering up to terms of order
(v/c)?, will be considered with the heip of the Darwing Lagrangiane5].

As in the previous case, we select for each p.sip. the independent variables given by (12), and repeating
the previous procedure we arrive at a closed system of 30 equations of motion that is consistent with the
expression of the energy. In that expression appears the terms of the 'Breit interaction [6] of quantum theory:

Uso= r::(g:rzs (éz!:1)+ r::3:3 (§1I:2) and Ugg = 9192[(S1L2) 3(*311‘32)}

where L =&I31)' and L, =(F!32). The terms of Uso are the classical representation of the spin-orbit
interactions between both p.s.p. and those of Uss are the classical representations of the spin-spin
interactions between the p.s.p., we have proved that the classical model of the p.s.p. in also able to give a
classical explanation of the spin orbit and spin-spin interactions between two particles.

This Hamiltonian conduces exactly to the conservation laws of. the energy, the total momentum, the total
angular momentum and the square of the spin for each p.s.p.
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IV. ABOUT THE MOTION OF A NEUTRAL P.S.P. IN SOME STATIONARY EXTERNAL FIELDS

The trajectory q(t)and the values of other variables, a(t), é(t),---, for instants t > 0, are uniquely

determined by the motion equations (6, 7, 8) after the known values Gq, Bg, do, f, S, of the independent
variables at t = 0. We will consider a neutral p.s.p. (e = gg = 0). It is convenient to introduce instead of the

variables d and f other physical quantities with dimensions of length and linear momentum: E:El«/ucm ,

f=mE = fm/x f,and it is possible to show that £ for neutral P.S.P. is proportional to the vector that joints

the center of positive charge with the negative pne. This means that if E grow up with time the condition (3)
may not fulfilled and the p.s.p. desintegrates.

In the absence of external fields (free motion), the solutions of the equations (6, 7, 8) are:
Q =qg +qotE, =ES cos ot +£% fop senagt, and S, = S, (14)

from which it can be seen that the trajectory of a free neutral p.s.p. is the same as for a free p.s., the proper
frequency oy, is the frequency of the oscillations (rotations) of the dipole moment, and the projections of the
spin are constant. The mean value in time of the dipole moment is equal to zero, using the definition:

d,)=1T LT JkmE, (dt =0 where T=2n/o, (15)

4

In classical or quantum theory of p.p. we have no physical characteristic analogous to the proper frequency.
Only in the work of Schridinger [1] for-the “Ziterbewegung” of a free quantum relativistic spin particle does
<ach a quantity appears with the value oo - mgc*/a. It is important to remark that the value of mg according to

[1] is very large, for example for a neutron it is of the order of 10%* 5™, this means that for a reasonable peﬁod
of time At < 10", the dipole moment makes more than 10' oscillations (or rotations), and in a direct

measurement, one measure not d but (&) according to (15).

This means that we need to estimate the possible values of E“ and E“. For this purpose, if we accept
according to [1] that oo = 2mc%/3# and that the intemal energy is the relativistic rest energy mc?, with the
help of the virial theorem for the mean value of the internal kinetic and potential energies, we arrive to:

~c <&} <c, —3/2, <& <3/2%,, X, =h/me, where X, is the Compton wave length.

In a homogeneus gravitational field, G = const, it is possible to verify that the trajectory of the p.s.p. is the
same as for a p.p., and the solutions for the dipole moment and the spin are the same as for a free p.s.p.

In & homogeneus electric field E = const, the trajectory of the p.s.p. is again the same that for a p.p. The
spin S =const. But the mean vaiue of the dipole momentum is: @: xél_mg which means that x = I¢?

determines the polarizability of the neutral p.s.p. This give a value of 05 x 10° fm® for the polarizability of the
neutron.

In a homogeneus magnetic H = const, also takes place a polarization of the p.s.p. and its trajectory may
differ from the trajectory of the p.p. only for stremly low velocities.

The motion in perpendicular homogeneous gravitational and magnetic field G = (G.0,0), A = (0,0,H); in the
solutions for the dipole momentum appears a term thloaf that increases monotonically with time, where:
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mf =m§ +v2 v=-/k/mH/c, and for long intervals of time the p.s.p. may disintegrate. For the deflection
angle, when mg >> vZ, and neglecting the oscillating term, we obtain

0= arctg{q"zt;}_ arctg{vgg / (qg+Gt—v§3J} from where it is seen that if G < 0, the velocities in the
X .

denominator decrease, and the deflection angle increase.

In the case of the motion in a Coulomb field ¢ = Z|e |/ we are able to calculate [7] the cross section of
incidence and obtain the value o,,, = 2n5/E,]*% where E, = mg2/2 (the initial energy), & = Z?e%«/203.This
is the same dependence of E that predicts the quantum Breit-Wigner formulas.

From the examples we have studied of the motion of a neutral p.s.p. in stationary gravitational, electric and
magnetlc homogeneous fields and non homogeneous electric field, it can be seen that the motion of the
neutral p.s.p. may differ from the motion of p.p. only for very low velocities.
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