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ABSTRACT
We present an approach based on field theory to describe the production and decay of unstable

K -K%and B° —Eumixed systems. Applications to describe the time evolution amplitudes of
K? and K° at DAPHNE and CPLEAR are presented,

1. INTRODUCTION

Neutral strange and beauty pseudoscalar mesons, K°K® and B°BY, are systems of two unstable mixed
states of special interest for the study of weak interactions. They are particularly suited to study the
phenomena of CP violation together with' the oscillations in their-time-dependent decay probabilities [1].

The traditional description of unstabie neutral kaons is based on the Wigner-Weisskopf (WW) formalism [2].
In this approach, the time evoiution of decaying states is governed by a Schridinger-like equation based on a
non-hemitian hamiltonian [3] that allows particle decays. As a resuit, the diagonalizing transformations, in
general, are not unitary and the corresponding eigenstates are not orthogonal.

Beyond these unsatisfactory features of the WAW formalism, one faces other difficulties. Projected factories
of K and B mesons [4, 5] are expected to measure the CP violation and oscillation parameters to a higher
accuracy than present experiments. While it is not clear whether the approximations involved in the WWW
formalism are valid for both the K and B systems, a consistent scheme is certainly required to compute these
observables to an arbitrary degree of accuracy.

In this paper we adopt the view that the quantum mechanical behavior of a complete process involving the
production and decay of unstable states can only be consistently described in the framework of auantum field
theory. In QFT, the S-matrix amplitude becomes the basic object that describes the properties of a physical
process among particles. This amplitude is taken between in- and out- asymptotic states which are defined as
non-interacting states (stable particles) existing far away the interaction region. Therefore, as a general rule,
unstable particles cannot be considered as asymptotic states.

Under these conditions, unstable particles appear only as intermediate states to which we associate Green
functions (propagators) to describe the propagation amplitudes from their production to their decay spacetime
locations. The form of these propagators, which are consistent with special relativity and causality, determine
the time evolution of its decay probability. Since Lorentz covarance is implicit to the field theory approach,
neither boost transformations nor the choice of a specific frame are required to define the time parameter in
the ampiitude.

In this paper we will also address some questions related to the usual treatment of CP violating parameters.
As is well known, the K°K® (and B°B") system requires of two parameters to account for CP violation in the
propagation (indirect } and decay (direct ) of neutral kaons, usually related to ¢ and =", respectively [6]. The
description based on the WW formalism is not valid beyond order = because of the aforementioned difficulty
in the nomnalization of non-orthogonat states. Since &'~ O(e”) for the K°K® system, it becomes necessary to
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establish a correct formalism [7] to account consistently for terms of order ¢*. Furthermore, this is necessary
because the usual approximations for neutral kaons in the WW formalism, might fail in the case of B mesons.

On the other hand, € and " can be related to the observ ters that measure CP violation in the
K%K system by assuming isospin symmetry and the factorization of strong rescattering effects [6]. These
approximations are rather strong assumptions in view of the smallness of direct CP violating effects [8, 9].
Without involving the isospin decomposition of the amplitudes, in this paper we shall parametrize CP violation
in terms of the mixing of CP eigenstates K, — K, (indirect CP violation) and the parameters .. and v, which
describe the CP violating 2= decays of K; in our approach.

This. paper is organized as follows. In section Il we discuss the diagonalization of mixed propagators in
momentum space for the system of unstable neutral pseudoscalar K and B mesons. In section 1ll we focus on
the space-time representations of these propagators. Section IV is devoted to the applications of our
formalism to compute the time-dependent distributions of neutral kaon decays as adapted 1o CPLEAR and
DAPHNE experiments. Our conclusions are presented in section V.

2. UNSTABLE PARTICLE PROPAGATOR IN MOMENTUM SPACE

As previously discussed, the propagator is the basic object in the S-matrix amplitude that describes the
propagation of an unstable state from its production at space-time point x through its decay at point x". In this
section we study the momentum space representation of the propagator for the neutral kaon system, which
will be needed to compute the S-matrix amplitudes.

Since the weak interaction couples the flavor states K®and K°, the renommalized propagator for these two

unstable particles is a non diagonal 2 x 2 matrix. By imposing the CPT symmetry, we can parametrize the
inverse propagator for unstable kaons of four-momentum p as follows [1]:

D!(p? )=[ ° H’) | )

a-b d
where
d=p?-m3 +im,T,, ' (2a)
a=r+is?, (2b) "
b=p?+iv?, (20)

and my, T, P, 8%, p?, v* are real quantities.

We define the CP eigenbasis as

(E)E%G ~D (g’} ES(;:J @

where S = 8. The corresponding inverse propagator is

B (p?)= sD"(p?)s~* = [d N d:t;) . @)

CP conservation implies that b vanishes. For the K® —K°® system, b is small compared to the diagonal terms
and it is predominantly imaginary [10]. _
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Now, if we ihiroduce‘ the compiex parameter £ as

€ b
- =—, . 5
1+82 2a %)
we can derive the diagonal form of the inverse propagator because Equation ()] can be rewritten as,
' a2
] 1 €Y d+a : -fz 0 1 -8
D-1(p2_)51_‘2 +& o _ ©)
®le 1 0 d-a = |{-& 1
SN 1+¢

Therefore, the physical basis of neutral kaons consists of two states K_s, of definite masses m_s and decay
widths I', s, such that '

_=2
dg xpz—mé +imgly =d+a:+22 _ (7a)
4 =p? - +im T, =d+a =% b

G =pT-m+im ] = +aa_?’ (7o)

%

" and the propagator D(p?) can be written as follows

—o 1 (1 (45 o) (1 -3 | | |
ovmslt 9 20

As already anticipated, the diagonalization of the non-hermitian matrix given in Equation (4) involves a non-
unitary matrix. Furthermore, according to Equation (8), we can obtain a proper orthogonal and normalized
physical basis if we define independent ket (in-) and bra (out-) states, respectively, as: :

Uij} ) 4117 (—1§ TJ (::?)J , )
and
(ol =6 D)

Notice that bra states do not correspond to simply hermitian conjugate of ket states.

The quantities mg,, T's, and £ can be measured experimentally, while the parameters a, b, my and I, can
be in principle computed from the theory. The reiationships between these two sets of parameters are:

1(1+8°2 .

a= ..2_(1__:_2_) {mf -m% ~ifm I, - msrs)}, (11a)
. 1 5

m2 ~imgT, = E{mf —m2 —ifm I -meTg)) (11b)
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. b=

£

o i -md —ifmcry - mgT)} | (110

Since b is predominantly imaginary for the K® -K® [10] and & ~ ©(10%, we can compute the phase of the
CP violation parameter £ which is given by:

¢(€) = arctg (—M]

mgls —m I}
- arclg [mz(mL —Ms )J + o[r—s, M —Ms ] - (12)
. I's -T} mg m +Mmg .

=(43.49 +0. 08)

where we have used I'/ms ~ O(10™*%) and (M — mg)/( m_ + mg) = O(10™"%. As is well known, this result is in
excellent agreement with experimentai data [11].

3. SPACE-TIME EVOLUTION OF RESONANCE PROPAGATORS

In this section we are interested in the time dependent properties of the propagation of unstable particles
for the purposes of studying CP violation ‘and the time: oscillations in the kaon system. We shall therefore
focus on the properties of the unstable state propagator in configuration space.

Let us first consider the propagator for a stable spin zero particle:

g iPAx"-x)

A.:(x -x) = j (13)

2)4p—-m +ig

To manifest the time dependence in the amplitude, it-is necessary to put this expression into another form
showing a separate time evolution for the particle and the antiparticle. A contour integration in the complex p°
plane gives: o

Ap (X' —Xx) = —i o(t'-t)

J.dsp e-iﬁ.(i’-i)e-iE(t’-:)
( 2E

da e—lp(x x)elE(l —t) .
I 2 P ot - t) (14)

)° 2E

with E = ./p? +m?

Depending of the specific process, the first (second) term in Equation (14) will survive in the time-
dependent amplitude and will describe a particle (antiparticle) propagating forward in time.

Let us now consider the propagator of a spin zero resonance. The Dyson summation of self-energy graphs
leads to the following renormalized propagator in momentum space representation:

1
p?-m? +iyfp? Ip?Jolp? -p)

(15)
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where pf,, is the threshold for the vanishing of the imaginary part of the seif-energy in the case that we
consider only one decay channel.

In order to justify the constant width approximation used in Equation (7), let us consider the 2r decay width
of kaons. A direct computation of this decay width, for a kaon of squared four-momentum s, gives:

s \m? -sy,

' %
I(s) = m_z[“ﬂ} 2 r (16)

where m is the kaon mass, sy, =4mZ and I' = P(s = m?). The influence of the kaon width in the propagator is

felt only for /s values near the kaon mass, i.e., for m—xI" < /s <m+xT, with x an arbitrary number of order
1 such that xI' /m << 1.

Since I's/ms, ['s/(mg ~ 2m,) ~ O(10"*), the form of the propagator with a constant width

1
p? —m? +imI‘96)2 —p,z,,) '

a7

tumns out to be an extremely good approximation for the renormalized propagator.

_ ) )
Therefore, the space-time representation of the spin zero propagator for the unstable particles can be
written as:

e

d4 e LX)

. 18)
@r)* p? -m? +imrop? —p2) a8

Ap(X'—X%) =j-

Similarly as done above for the stable particle propagator, we would like to express explicitly the time
dependence of Ag(x"- ). It becomes convenient to separate the propagator into two pieces:

Ap(X' = x) = AQ(x' - x)A® (' - x) ' (19)
with
d‘p e—lf).(x'-x)

A x - x) =

R( ) Jl(zﬂ)‘ p2_m2 +‘mr

(20)

@ d’p (Pa dp® —iP.x'—x) 1 1

A (x - x) = j' J‘ P . -

(2r)® -5k 2n pl-m? p?-m?+iml

where pf, =\/p +pf .

Using again the condition [/ (m —prh) <<1, we can show that

AB(x—x)~ O[L] ,

m-.Jp2,

which allows to write
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d4p e~ip.(x'—x) r : .
Ag(dX —x} = 140 ——=1] . 21
w ‘ (2‘1':'.)4 pz —-m? +iml m-."ptzh @

In order to made explicit the time dependence of the unstable propagator let us use the following pole
decomposition

. y 2 :
2 2 . _ - ir'm _ iI'm r ]
p¢ ~m° +iI'm _(po E+m——2E ](po +E 2E ][1+<{mm2 ]] (22)

where E =+p?-m? .

Therefore, by neglecting very small terms of order 10", the contour integral in the complex p® plane with
the poles located at + (E - imI/2E) gives

) I dap eiﬁ.(i‘—i)eﬁiE(t'ut) e”12: _E(l,_!

Ag(X =X) =—i af o >e(t'—t)

e d%p e PE R EM-1) _LMq 4y
—i e 2E° gi-t). : (23)

I (@n)® 2E ,

The interpretation is similar to the one for the stable particle, except for the decay constant I' which
expresses the unstability of the particle and antiparticle. The case of K°K® system considered in this paper is
more involved, because the propagator is a 2 x 2 matrix. This problem is circumvented by performing the
diagonalization before the contour integration in the complex plane or p’.

Notice that t = t’- t is the time elapsed between the production and decay locations of the resonance. Note
also that, contrary to non-relativistic approaches, the factor m/E naturally appears in the exponential decay
factor. Therefore, no boost transformations are required to relate the proper time to the time parameter of a
moving particte. Of course, the exponential decay gets its usual form g™ [1] in the rest frame of the resonance.

4. APPLICATIONS

In this section we compute the full S-matrix amplitudes for the production and decay of neutral kaons as
studied at CPLEAR and DAPHNE experiments. Then, we derive the time evolution of these transition
amplitudes and introduce the CP violation parameters intrinsic to our description.

4.1. CPLEAR experiments

At the CPLEAR experiment [12], KC® and K°are produced at point x in the strong interaction annihilation of
pp, and subsequently decay at point xto R by the effects of weak interactions. The production
mechanisms of K® and K® are pp-» K°K™n*, K°K*n", thus neutral kaons can be tagged by identifying the

accompanying charged kaon [2). After their production, both K° and K oscillates between their two

components K. and Ks before decaying to the 2r final states. We would therefore be interested in the
description of the time evolution of the full decay amplitude and its interference phenomena. It is interesting to
note that despite the fact that charged kaons and pions have similar lifetimes as K, they can pe treated as
asymptotic particles in the present case.
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In order to relate the different S-matrix amplitudes, let us first consider the production mechanism of K°K° .
Since strong interactions conserve strangeness, we have

M(pﬁ - K‘x+R°)= M(pﬁ - K*n‘K°)= 0, (24)
which, according to equation (3), implies | |

M(pp - KwKy)= M(pp - K-n'K, )= A (25a)
M(pB > K*K,)= - M{pp > K*nK,)=B. | (25b)

Assuming CPT invariance we obtain
Mpp - KwK®)= Mpp —» K*n K%)= C. (250)
Collecting all these constraints, we get

A=B=C 26)

N
Now, let us first consider the complete process for the production of a K® decaying into =7
P@)+P@) > K™ (k) +7* (k) +K2(p) - K~ (K) + 7* () + 7+ P1)+7(p,) P ]

" The full amplitude corrésponding to this process can be written (the subscript + - refers to the charged of
the two pions from K° decay):

T,_= I d¥xd*xe/Pr+p2)x (/Mﬁ(1 - n.*n‘), M 6(2 - n*n‘))x.A';'Kz (x'-x)

MIK® 5K - . e '
{M $K° —»K;g]‘M(pp -+ K'=n KO)E'(M arx (28)

where A:KZ (X'-x) is the propagator matrix for the coupled K; — K, system in configuration space.

With the help of equations (3), (8) and (25), this gives:

T..= I d*xd*xe/Pi*p2 )x'g(/"“'ﬂ >wtn), M k. > uf’n_))j (_2(14% g (X
' n

y 1'[1 é].dg’(p)‘ 0 (1 —E:]MK”—»K,}
1-22@ 1 o aq'@)\-8 1 MK >k,)

x 2A gl -aix (29)

. (2,‘)—4 J' d4xd4'x:d4pei(p1+p, —p).x’ei(k+k'-q-q‘+p).x A

oo EITT

i
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{[m S )rim s _m)]. 1

pi-mi+ |msl"s

"'.[5/.\4("(1—>7‘+“_-)+M-(Kz:—>“.+“_)],m} P L - (30)

..(211) 45(4)(q+q -k - k—p1 pz) AM(K S>atn ) o

(P1 +Pz)2 ~m§ +imgTg

| {(1+x+_ ) !

2

RO P— } e

(P1 +P2)\ mL 'HerL

where

o MK, - )

UMK ) !

(32)
is the parameter describing direct Gp Qi@llgtidh' in our approach, . J'
To obtain the time dependence of the full amplitude whrere an originally pure K°

state'de_cays to n'n, we must insert Eq'uaﬁon (23) into Equation (28) and we get: -

T,_ =-i2n)*5® (g +q—k ~k'~p, - pz)ﬁg AM 6_(1 San)

| s,
x (1-+x-+_é)j a1 [ e 1€~ E)‘e ey e(t)+e'(Es E)‘e = '6(—1)}
+ G, )t o BN T .,,e(t..),+e."+?."_e_. T X S )
where E = pf +pJ is the total energy of the ='x system;

Es =+/(p1 _+_62,)2+m§ ;

and we have defined the time t in Equation (33) as the time elapsed from the productlon to the decay
locations of K. Thus, the transition amplitude T(t) describing the timie. avalﬂhmeﬂhe system:fort > 0 is given
by the mtegrand propomonal to B(t) in Equatlon (33) namely

T, = Si@n*50(@ ¥ 4k —Kp, - p) L AM(K > a' ) S
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' _ mg 1 my
1 -ied HSE! s, 1 e R .
= e s 1+ +—e e t e+ . 34
X[ZES (1+%,-€) %, (Chg 39 b (34)

Let us now consider the analogous process where a pure K°state is 'ihitiarry' produced and the decay to
e pp > K'aK® 5K nfn [12]. Following the same procedure as in the case of K® production and

decay, we can get the following expression for the time evolution of K decays:

u : - - 1 +o— Lo
T = D@05 @+ a K-k, -p,); — AMIK, > ' Je
. LT ) e, IS
{5;— e Bsle B (144 3 —% eFle "B gy b (35)
S L

Let us notice that if we were interested in the n%° decay mode of neutral kaons, we would have to replace
in Equations (34) and (35) M(K: — x'1) by M(Ks - 7°1°) and . . by x50 where

- MK; - noftb)

MK, - n%2°%) 6)

Xoo

Using Equations (9( and (10), we can express the ratio of CP-violating to CP-conserving decay amplitudes
of K., Ks states in terms of the CP-violating parameters in our approach:

n* = MK, == 'Jt:)= 8+x+1 ’ a7)
MKs > n'rn") 1+, 6 .
and
0,0 - :
+
119057\'3\0’9_‘*7111'5)_S %00 38)

MEKs > n°2°) " 1+xgof

As is well known, the parameters "~ and 1™ are commoniy used to express the violation of CP in the two
pion decays of K, (see for example pages 422-425 in [11]). Note that the above relations between.
measurable quantities and the parameters that quantify direct and indirect violation of CP, are derived without
relying on assumptions based on isospin symmetry, contrary to the relations obtained for the 1 parameters in
terms of the usual parameters ¢ and <. Since the parameters x. .., are expected to be very small, we can
neglect terms of O () in the above equations and use isospin symmetry to show that in that limit,

x+-= e’
Yoo = =2€”.

Finally, let us mention that Equations (34) and (35) reduce to the two welf known expressions for the time
evolution used in the analysis of the CPLEAR coliaboration [12], when we choose the center of mass frame of

the two pion produced in K® ~K° decays.
4.2. Neutral kaon production ad DAPHNE

In this section we consider the oscillations of the pair of neutral kaons produced in e'e” annihilations at

DAPHNE [4]. The resuits obtained:in the present formalism for the K°K® system can be straightforward
generalized to describe the same phenomena in pair production of neutral B mesons in the Y(4s) region [5].
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Neutral and charged kacns will be copiously produced (~ 10° pairs K°K°Iyear) in e"e collisions operating
at a center of mass energy around the mass of the $(1020) meson [4]. The ¢ mesons produced in ¢’e” annihilations

decay at point x into K°K® pairs, and subsequently each neutral kaon oscillates between its K -Ks
components before decaying to final states fi(p) and f,(p") at spacetime points y and z:

$@ KK > FERE) . (39)

where q, p and p-are the corresponding four-momenta. -

Since each final state can be produced by either K® or K®, we must add coherently the two amplitudes
arising from the -exchange of K or K° as intermediate states. Conservation of angular momenta forces the
system of neutral kaons to be in.a p-wave. Taking into account the charge conjugation properties of the
electromagnetic current, the pair of neutral kaons are found to be in ‘a total antisymmetric wavefunction [13].
Thus, the relative sign of the two contributions to ¢ — f,f, decays must be negative. The S-matrix amplitude
for the.process:indicated in Equation (39) is: _ S e .

Tm-2 =Id4xd4yd4zeip-v+ip-1M (¢ _)KOKIO)e—iq.x--.

F— L

_ o ,_ -
x{(M(K1 - I MK, - ) A2 (z - x)(x o :x;))]} : . (40)

Let us define My = M(K; - f). With the help of Equations. (3) and (8), we can reexpress the previous
amplitude as: S : A .

. PR d4k d4kr - _ i _ 1
Tf1,2 =J.d‘.‘xd4yd4zeip-v+lp z lq.xj - -———46 ik.(y-x)—ik".(z—x) -
(2r)” (2n) 2(1-&%)

g+ 5M) 500+ 6y + M) 0]
: 5*'[(7\"%2 +8Mag )d§1(k')‘“(éMiz"'”FMzz)df.q(k'-)] L

[ My +EM20) 5100 - EM4g + M) (0]

B e e I
RS B |
. : 41)

=@2m)* s (@g-p-p) —
1-¢

) . 1 1
— (Mg +EM Moo + Moy .
{( M) @M+ Maa) s T
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" " 1
+ +M +EM,)
EMy4 21) My +8 2) 7 e

1 S
—_—————————— | . 42
pZ-m? +imsrs} : - T _ “2

As anticipated, the relative sign of the two contriBuiions is negative.

As in the previous subsection, in order to obtain a time evolution of the amplitude, we can insert the explicit
time-dependent propagator, Equation (23), into the amplitude (41). The result is

Ty, = J' dtdt(T(t.6(O(t) + other terms in é(:tt),ﬁ(:l;t'))

where t and t’are the times taken by unstable kaons to propagate from the common production point (x) up to
their disintegration into f, at point y and f; at point z, respectively,

Thus, the explicit time evolution of the decaying amplitude is given by

1 4.4(4) A aipt+in? 1 (010
Tt) = —p-p)ePter _1 KoK
1) =~ @0)*s 9 q-p-p) w5 Me-KK)
o B ot T 54 ~IE T T
~[Mas +EMp ] [EMyz + Moy xe e ¢

o g Mg ..
—IEs(pW-1Ts E':“

e

. ' ~IE ()t 21 |-
+EM1 + MMy + My ]xe L

where Es, (p) = /p? +m2, .

As we have already pointed out in the case of the CPLEAR experiment, no boost transformations are
required to adequate the time evolution of the decay amplitude to a givem reference frame. Observe that, due

to the initial antisymmetrisation of the K°K® system, T(tt) =0 if f; =, and p = p’as noted in Reference [13].
5. DISCUSSIONS AND CONCLUSIONS

We have already discussed in the introduction the problems intrinsic to the Wigner-Weisskopf
approximation. Other papers have appeared recently criticizing the old approach [14, 15, 16, 17] but they all
present shortcomings which we will discuss in detail in an extended version of this paper. Their introduction of
a proper time parameter for each particle forces them to use boosts to express the answer in a common
frame. As we have shown in this article, relativistic quantum field theory yields results for the time evolution
valid in any frame. An interference term showing time oscillation has then to be converted to a space

evolution by the classical formula t = E x. We remark here that this formula applies to particles observed in

the detector and not to unstable Ks and K, states.

A similar discussion based on field theory was considered spmetime ago in Reference [3]. The field theory
formalism, considering unstable particles as intermediate states between in and out stable states avoids
asking questions without answers about these intermediate particles. Moreover the result is relativistically
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correct and valid in any frame. Finally, we have introduced the CP violation parameters {T:and %i-Xoo (Cf

equations (5), (32) and (36)) without relying on the Wigner-Weisskopf effective hamiltonian or approximations
based on isospin symmetry.
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