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ABSTRACT :

Starting with the approach of
nucleon interaction, to be a term
we devetop a formalism which makes possible to

as their energies. A system of 3 coupled equations,

nsidering a part of the residual hamiltonian corresponding to the three
due to the interaction between Cooper pairs and unpaired nucleons,

calculate the excited states for heavy nuclei, as well,

similar to that of the BCS is obtained in such a way

that all the parameters introduced in the model can be calculated.

RESUMEN
En este trabajo se considera un modelo de tipo
pesados.
Cooper y las particulas desapareadas,
de tres nucleones. Se obtiene un sistema

BCS para calcular niveles de energia para nGcleos

Se fienen en cuenta, ademas de !a interaccin por pares,

la interaccion entre los pares de

lo cual se interpreta como una parte del Hamiltoniano residual
de 3 ecuaciones acopladas del cual s¢ pueden determinar los

" parametros introducidos y asi obtener ios estados que tienen en cuenta la interaccion de tres cuerpos.

INTRODUCTION

The study of exotic nuclear configurations,
including nuclei in extreme conditions, has been a
topic of great interest during the last few years.
There has been considerable efforts both from the
experimental and theoretical point of view looking for
a more comprehensive approach of such
phenomena. In particular, with this aim, several
models has been developed, and other well known,
as the shell model, has been modified trying to
explain the characteristics of . such exotic
configurations [1, 2].

Particular interest has been. devoted toc some
structural characteristics of the above mentioned
nuclei. This is the case of the nuclear halos and the
superdeformed states. There has been attempis to
explain these phenomena in the framework of single
particle and mean field models with some good
results [3, 4].

Nevertheless several works show the importance
of considering terms in the nuclear Hamiltonian
beyond the mean field approximation (the so called
residual Hamiltonian). Taking one of these terms into
account the Interacting Boson Model (IBM} has been
applied to describe the inertia moments and other
parameters of superdeformed nuclei [5]. Also the
Hartree-Fock mode! together with the Bardeen,
Cooper and Schrieffer (BCS) one has been used to
obtain ground states for nuclei close to the proton
drip line [6). Other pairing models have aiso been
successfully applied to explain some characteristics
of exotic nuclei [7].

The approach of considering the pairing in the
nuclear Hamiltonian is better to that of considering

only the mean field, but the pairing interaction is still
a part of the residual Hamiltonian. Other terms have
proved to be important. For example, the four
nucleon interaction could play an important role in
the calculation of inertia moments for heavy
nuclei [8). In this regard, the three nucleon
interaction couid be an important contribution for the
nuclear structure even for heavy nuclei [9]. At-this
stage one shoulid mention that three body interaction
is interpreted as a correlation beyond the mean field
approach, which take into account some kind of
collective behavior of the system.

The three nucleon interaction was recognized long
ago [11] and now is still under study mainly for light
nuclei [12, 13]. This could be due to the fact that the
problem of a many body Hamiltonian including three
nucleon interactions is hardly solvable. Even with
approximate methods is. very difficult to solve such
systems.

This paper intend to develop a formalism that
include the three nucleon interaction in the frame
work of a BCS approach for heavy nuclei taking into
consideration the success of such method in the
treatment of nuclei in extreme conditions and far off
nuclear stability.

THREE NUCLEON INTERACTION POTENTIAL

In order to include the three nucteon interaction
into the nuclear Hamiltonian we need to set up a
particular form for this potential. In the present paper
we propose the potential as an interaction between

. Cooper pairs and unpaired nucleons.

In the BCS method it is introduced a canonical
transformation to quasiparticles, which are called
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Cooper pairs, for these quasiparticles are pairs of
nucleons. Accarding to this model [14] an excited
state of the system correspond to the creation of
certain number of guasiparticles. On the other hand
there could be some unpaired nucleons. The BCS

model does not consider interaction neither between

the Cooper pairs nor between pairs and unpaired
nucleons.

In this paper we go beyond the free..

. guasiparticie approach by considering the interaction -

between Cooper pairs and unpaired. nucleons. -Such
an interaction in this representation takes the form of
a two body one, but there are really three nucleons

interacting, thus it contains a part of the three

nucleon mteractaon

Let V,(r9,r) be the interaction potential between

" a quasiparticle and .an unpaired nucleon. Then the
potential due to this mteractlon for the whole
nucieus is: . :

3

RY

ap ~ Vz(rs !rj) :

(M

i=1 j=1

where nq and n are the numbers of quasmarﬂcies
and unpaired nucleons respectlvely

Transformlng this expression to -the second
quantlzahon representation we get:

A

qu = ZV1234ak1akzaksak4 (2)
Kk okogkt 4 - .
where:
Vap " = f\Bcsk o[ VoBCSka) ()

This is the most general possible expression for a
matrix element of the interaction between a Cooper
pair and an unpaired nucleon and could be
understood as follows. A pair k», which is a pair built
up from two particies of momentum: k; and -k,

where:
Vo - TZ (1+vE )6 G, (6)
KoKz
ND “y s
qu = Tzzuké Vi, m:& G':K: - (7)

kky

The term \“ID- is diagonal with respect to the
nurmber of quamparttcies and VD isn't. The term

V'nt s’ a set of terms every -ghe having four

' _annrhliatlon and creation operators thus, it is & term

of -interaction -between quasiparticies, which is

neglected in the same way as in the BCS method.
in order to ge forward is: necessary to diagonalize
the Hamiltonian - including - all the terms of the

‘BCS method and those corresponding to the

interaction between quasiparticles and free nucleons
{6) and (7).

DIAGONALIZATION OF THE TOTAL
HAMILTONIAN

. The-Hamiltonian to be diagohal'ized is:
‘Huecs = H’s§e+vép (®)

where- I:l'B'(;S is the BCS Hamiltonian, wmch already

in¢lides the chemical potential 1. - o

in order to fix the number of quasiparticies we
introduce thé Lagrange multiplier A, in the following

way.

respectively, annihilate-with a particle of momenturm Kq.

and are created a pair k; and a particle with
momentum ki;. Nevertheless, the momentum has to
be conserved in the interaction, then we consider as
usual constant matrix elements for k; =k, and we get:

T ot S 8t a
Lp =0 Z Vg Xk, By Ay
’ " KekzKg )

Ay
i

(4

~ Using the Bogolyubov canonical transformations
[14] and organizing the operators in normal form, the
potentiai yields: -

"D vyND | ygint
Ve =qu +qu_ +V$ {5)
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of the potent:al V

(®)

Huges = Hwacs —MNg
Where Iqu is the:quasiparticle number operator. |

The ground state of the nucleus (the quasiparticle
vacuum) is not: modlﬁed because of the introduction

for it doesn't have a constant
term. Th:s could also be understood from the fact
that V qp IS @n interaction between free particles and

guasiparticles, thus, in the absence of quasiparticles
it vanishes. The ground state then will be the same
as in BCS, then we have to assure that the first
excited level is a minimum. For these reasons it has
to satisfy the following variational principle.

(0%, OHwpcs 0%, 0) = (10)



Here the vector 01, O represents a state with

one quasiparticle in the single particle level k, and all
the other single particle states empty. We obtain an
expression very similar to the gap equation.

A= % A IGgZ (’a’,? +A? T-’/Z +T

(1)
k=0
where the modified gap is defined as:
CA=ED U+ T=AT (12)
k>0
and
Ek =By '(ék,, + Ty, - (13)
&, =6k, A= (14)

w=] wiey (k-2

k>0

ke , (19)
(e — A=A+ T)Skk“]z + A'z}_ k +T
and:’ —
N .—.1+-;—{1+(T—l1)[('t'—11)2 +A'2]_%} (20)
and:

1=22{1—[52-7»—(52—?u-l1+T)8kk"]-

k>0
keQ2

)
'[(82 AA=(e) — A=Ay + T, | + A-z}}_' 2

From the solution of this system we obtain the

_ values of the parameters A, A; and A" and then

Then the Hamiltonian is diagonalized and the new

quasiparticle levels are:
N . .~ iy
E, =(a,f+/,\'2)/2+ -%T[S—ek(s|?+A'2)’/2} (18)

These new levels are modified for the three
nucleon interaction. As expected in the case of no

interaction between quasiparticles and free nucleons =

(T =0) A'=A and the expression (15) becomes the
corresponding expression for the quasiparticle states
of the BCS approach..

The expressions obtained above have the same
form as those from the BCS method, then we may
use similar approximations and reduce the sum in

(11) to the shell £2 containing the Fermi surface.

A=

L) SR e
2 e

(16)

For the complete solution of (16) we have to
consider the presence of the parameters A and A4

which can be obtained from the conservation
equations of the nucleons and quasiparticle numbers

in the state 0% 0}.

- /\ o1kno1r§i~o1kno> =N (17)

and

/0% OIN, 01, 0} =1 (18)
| kA ke

We finally obtain.a set of three coupled equations.
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substituting them into (15), (14) and (13) we obtain
the energy levels including a part of the three
nucleon interaction. ,

The formalism developed in this paper could be
applied to the study of the structure of nuclei in
extreme conditions, were the three nucleon forces
has shown to piay an important role.

CONCLUSIONS

In this paper we proposed an interaction potential
which include a part of the residual Hamiltonian
corresponding to the three nucleon interaction, as an
interaction potentiai between Cooper pairs and
unpaired nucleons. This form of the potential has the
advantage that it can be included into the BCS
Hamiltonian.

The total Hamiltonian including the two and three
nucieon potential was diagonalized using a
variationa! principle, from which we obtained a
system of three coupled equations similar to the BCS
ones. From the solutions of the system ail the
variational parameters can be obtained.

In the equation system there's still unknown the
parameter T, but it isn't a simpie adjustment
parameter without any physical meaning, for it is the
matrix element which in this paper is considered to
be constant. On the other hand this approximation
can be removed and then we will get an equation
system similar to that of the Hartree-Fock-
Bogolyubov one. ~
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