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ABSTRACT 
Ultrametric concepts are applied to the Bernoulli Map, showing the adequateness of the non-
Archimedean metrics to describe in a simple and direct way the chaotic properties of this map. 
Lyapunov exponent and Kolmogorov entropy appear to find a better understanding. A p-adic time 
emerges as a natural consequence of the ultrametric properties of the map. 
 
RESUMEN 
Se aplican los conceptos de la geometría ultramétrica al mapa de Bernoulli, demostrando que la 
métrica no Arquimedeana es la adecuada para describir de forma simple y directa las propiedades 
caóticas de este mapa. En este contexto, tanto el exponente de Lyapunov como la entropía de 
Kolmogorov encuentran un contenido conceptual claro. Como consecuencia de las propiedades 
ultramétricas del mapa, emergen también propiedades p-adicas del tiempo en este contexto. 
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INTRODUCTION 

 After the work by Mézard et al. [1], ultrametricity 
has triggered the interest in a wide range of physical 
phenomena, due to its applications in different 
topics: spin glasses, mean field theory, turbulence, 
nuclear physics. Also optimization theory, evolution, 
taxonomy, protein folding benefits from it (for an 
excellent review see references 2-5). Wherever a 
hierarchical concept appears, non-Archimedean 
analysis is an adequate tool to study the problem. 

 Ultrametricity is a promising tool in the theory of 
branching processes, which, at the same time, has 
revealed its possibilities in the study of self-
organized critical processes [6-8]. It seems possible 
to find simpler tools to describe the geometry of 
these processes. Here, we illustrate the advantages 
of a hierarchical representation in the case of the 
Bernoulli shift. This will permit, using simple geometric 
considerations, to determine the magnitudes 
governing the system, and the advantages of a p-
adic metric will be stressed over the Euclidean one. 
The ultrametric distance will be shown to be 
consistent with the characteristic behavior of this 
chaotic unidimensional map. 

 Since in this paper we explore the application of 
ultrametricity to link the Bernoulli map with a 
branching structure, this will reveal the possibilities of 
assign an ultrametric measure to processes that, 
apparently, are not linked with a given metric (e.g. 
minority game [9] and related problems) so that an 
adequate understanding of the ultrametric properties 

of a given process may lead to its deeper under-
standing. 
 
 In ultrametric spaces, concepts such as exponential 
separation of neighboring trajectories, and charac- 
teristic parameters (Lyapunov exponents and 
Kolmogorov entropy) seem to find a simpler 
understanding than with the Euclidean metric. 
 
 As an example, where Euclidean metric is not very 
adequate, let us consider the Baker's map [10].  
The interval ]1,0[]1,0[ ×  is mapped to ]1,0[]1,0[ × . 
Therefore, the distance between two points can't be 
larger than the distance between two opposite 
corners in ]1,0[]1,0[ × . 
 
 Nonetheless, the Baker's map has got a Lyapunov 
exponent bigger than one. Then, the distance 
between neighboring points grows exponentially in a 
finite region of the phase space. In the Euclidean 
space we would have to define the distance in this 
case as the Euclidean length of the shortest path 
lying entirely within the region that has suffered the 
deformation [11]. As any nontrivial norm is equivalent 
to the Euclidean or any of the p-adics (Ostrowski's 
theorem [12]), it would be convenient to measure the 
distance between points in the Baker's map with a p-
adic metric. 
 
 An ultrametric space is a space endowed with an 
ultrametric distance, defined as a distance satisfying 
the inequality 
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                 )}C,B(d),B,A(d{Max)C,A(d ≤                 (1) 

 (A,B and C are points of this ultrametric space), 
instead of the usual triangular inequality, 
characteristic of Euclidean geometry 
 
                        )C,B(d)B,A(d)C,A(d +≤                  (2) 
 
 A metric space E is a space for which a distance 
function )y,x(d  is defined for any pair of elements 
(x,y) belonging to E. 
 
 A norm satisfying 
 
                          }y,xmax{yx ≤+                     (3) 
 
 
is called a non-Archimedean metric, because equation 
(3) implies that 
 
                                      xxx ≤+                        (4) 
 
holds, and equation (4) does not satisfy the 
Archimedes principle: 
 
                                    xxx ≥+                          (5) 
 
 A metric is called non-Archimedean or ultrametric, 
if (1) holds for any three points (x,y,z). 
 
                    )}z,y(d),y,x(dmax{)z,x(d ≤                  (6) 
 
 A non-Archimedean norm induces a non-
Archimedean metric: 
 
             )}z,y(d),y,x(dmax{zx)z,x(d ≤−=           (7) 
 
 Equation (7) implies a lot of surprising facts, e.g., 
that all triangles are isosceles or equilateral and 
every point inside a ball is itself at the center of the 
ball, furthermore the diameter of the ball is equal to 
its radius. 
 
 An example of ultrametric distance is given by the 
p-adic distance, defined as:  
 
                             

pp yx)y,x(d −=                        (8) 

 
where the notation defines the p-adic absolute value:  
 
                                      r

p
px −≡                           (9) 

 
where p is a fixed prime number , 0x ≠  is any 
integer, and r is the highest power of p dividing x. 
Two numbers are p-adically closer as long as r is 

higher, such that rp  divides yx − . Amazingly, for  
p = 5 the result is that 135 is closer to 10 than 35. 
 
 Any positive or negative integer can be represented 
by a sum 

                                    ∑
∞

=

=
0i

i
ipax                         (10) 

where  

                                   1pa0 i −≤≤                        (11) 
 
 If negative exponents are considered in the sum, 
rational numbers can also be represented. Such a 
representation is unique. The set of all sums pQ is 
the field of p-adic numbers, and contains the field of 
rational numbers Q  but is different from it. 
 
Lyapunov exponent and Kolmogorov entropy 
 
 With the above description the p-adic numbers 
have a hierarchical structure, whose natural 
representation is a tree. Let us now use this 
description to work with the Bernoulli map (See [10]): 
 

                              
...2,1,0n

1modx2x n1n

=

=+
                     (12) 

 
 Here, we may note that the numbers can be 
represented as a set of points in a straight line or by 
a hierarchical structure, depending on the definition 
of distance (Euclidean or Archimedean) as we see 
below: 
 
 Let us represent the initial value (state) to be 
mapped into the unit interval by the sequence 

.....a.....a,0 N1 with ia = 0 or 1 to denote the initial 
value in binary notation. 
 
 It is possible to reorder these sequences as a 
hierarchical tree. To get it, let us do the following 
process to represent the result of the application of 
the Bernoulli map: 
 
 We begin at an arbitrary point. We read, 
consecutively, the values of ia , from i = 1 to N, of the 
sequence a1…aN… . When ia  takes the value 0 we 
move to the left, and the same distance down. When 

ia  takes the value 1 we do the same, but moving on 
the right. The result is 2N branches of a hierarchical 
tree. Any finite path inside this branching structure 
represents univocally a possible finite sequence 
a1…aN… .  
 
 Thus, for instance, the sequence 0,0110 represent: 
left, right, right, left. 
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 The distance )x,x(d ji  between two branches 

(sequences) ji x,x  in this tree is given by 

 

          






=→
≠→=

−

ji0
ji2)x,x(d

)nm(

ji                   (13) 

 
where m is the number of levels one must move up 
the tree to find a common branch linking xi and xj, 
and N is the number of levels (the length of the 
sequence). This is equivalent to 
 

   






=→
≠→=

−

ji0
ji2)x,x(d

h

ji              (13a) 

 
where h is the position of the last block ah in which ai 
(i = 1,....,h) are common to the two sequences xi, xj. 
It means that the numbers xi and xj are close up to 
the hth binary place. This distance is an ultrametric 
one. 
 
 To calculate the Lyapunov exponent it is 
necessary to know how neighboring points x0 + ε   
and x0 evolve during the Bernoulli map. Let ε be 
equal to 2-h[1 + 2

-δ1 + 2
-δ2 + …] > 2-N, then the first 

different position between x0 = 0, a1a2…ah-1aN…   
and  x0 + ε is ah. 
 
 Then, it is necessary to move up the  tree N - h +1 
levels from the bottom line to find the common 
branch in the position ah-1(obviously, the last 
common figure between x0 and x0 + ε). So, 
 
   )1h(

00 2)x,x(d +−=ε+     (14) 
 
and 
 
      n1h

0
n

0
n 2))x(f),x(f(d ++−=ε+   (15) 

  
because the iteration fn moves away the common 
branch n positions from the bottom level. 
 
 To calculate the Lyapunov exponent it is necessary 
to express the exponential growth of the distance 
between two neighboring points: 
 
  ))x(f),x(f(dlimlim2limlim 0

n
0

n

0n

n

nn
ε+=ε

→ε∞→

λ

∞→∞→
 (16) 

  
 Since the base for measuring the p-adic distance 
in our space is the number 2, in the preceding 
equation we have expressed the exponential growth 

with
n2λ

instead of .e nλ
 

 
 Replacing and ))x(f),x(f(d 0

n
0

n ε+  in the preceding 
equation we obtain 

,2limlim2)221(2limlim n1h

hn

nh

hn
21 ++−

∞→∞→

λδ−δ−−

∞→∞→
=+++ Κ

(17) 

from (17) it can be easily observed that. Since the 
Lyapunov exponent in the Bernoulli map is ln2 [7], 
we recover this result with p-adic metric, since  
2 = eln2. It means that each unit time interval implies 
a new doubling of branches in each node of the 
hierarchical tree. Then, once a unit time interval has 
elapsed, the number of levels one must move up the 
tree to find a common branch increases in one. This 
result will be crucial to understand how the 
information is lost in the course of time. 
 
 In unidimensional maps, as the one considered 
here, the Kolmogorov entropy coincides with the 
Lyapunov exponent [7]. The Kolmogorov entropy 
expression is: 
 

      
n1n1

n1

ii2ii
ii

0n
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n
1

limlimK ΚΚ
Κ
∑τ

=
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     (18) 

 
where 

n1 iip Κ  is the probability to reach the in state of 

the system in the phase space following a given path 
i1i2…in. It can be seen that in our case this probability 
only depends on the final state in because for each 
state there is just one path, i.e., that given by the 
sequence i1i2…in. Besides, the number of states in 
the nth level is 2n, and τ is the time elapsed to pass 
from one state to a successive one. The probability 

to occupy one of the 2n states is niiin
2
1

pp
n21

== Κ and 

it results 

     n0n 2
2

limlimK
τ

=
→τ∞→

          (19) 

 
 But the distance between two successive states of 
the nth level is 21-n, because they are common until 
the (n-1)th level. Since the speed v to pass from one 
sequence to the next is constant in Bernoulli map, 

i.e., 12 n1

=
τ

=ν
−

 the time τ elapsed between these 

two successive states is k = 1. As expected k = 1, 
coinciding with the Lyapunov exponent. Notice that 
the existence of a p-adic proper time is essential for 
the coincidence of the Kolmogorov entropy and the 
Lyapunov exponent. The spatial p-adic structure is 
unavoidable joined to the p-adic structure of proper 
time. 
 
 Therefore, we can say that this problem is endowed 
with a p-adic spatial and temporal geometry instead  
of a sole p-adic spatial geometry. To see the 
importance of the introduction of a p-adic time, see 
[13]. 
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 The Kolmogorov entropy measures the loss of 
information in the process. From our representation 
this loss of information can be easily seen, since the 
process of separation of trajectories is such that for 
any step the increase of the distance between two 
points duplicates the number of branches through 
which this increment can be reached. We are loosing 
information because we don't know exactly the way 
we are separating two states. 
 
 On the other hand, we can see that in the 
ultrametric space the natural time of the system is 
also ultrametric. The time of transition between two 
sequences xi, xj  satisfies the same expression (13) 
as the distance between xi, xj. 
 
 Besides, subsequent behavior of two states that 
separate in a given point in the ultrametric space 
depends of the point in which this separation occurs, 
revealing that ultrametricity can be applied to 
processes of decision (like minority games, aging 
effects, hierarchical processes, etc), all these fields 

in which ultrametric concepts have been poorly applied. 
The application of ultrametricity to the minority game 
will be treated in future works. 
 
CONCLUSIONS 
 
 It was verified that the Bernoulli map leads to a 
hierarchical structure in the p-adic metric. With the 
ultrametric distance the Lyapunov exponent and the 
Kolmogorov entropy acquire a better understanding 
and a direct geometric interpretation is supplied by 
the hierarchical structure. The p-adic metric seems 
to be the natural metric of this map. The hierarchical 
structure generates p-adic properties for the temporal 
evolution. 
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