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ABSTRACT 
The anharmonicity of a magnetic atomic trap at long distances from its center (forty times the radius of 
the first atomic orbit along the elongated axis, i.e. hundreds of microns) is shown to increase up to 45 % 
the temperature for Bose-Einstein condensation. This effect is perhaps small in the traditional traps, but 
should certainly be taken into account in magnetic microtraps, which characteristic dimensions are  
of order 1 mm . 
 
PACS numbers: 03.75.Fi 
 
RESUMEN 
El anharmonicity de una trampa atómica magnética a las distancias largas de su centro (cuarenta veces 
el radio de la primera órbita atómica a lo largo del eje largo, es decir ciento de micras) se muestra para 
aumentar por encima de un 45 % la temperatura para la condensación de Bose-Einstein. Este efecto es 
quizás pequeño en las trampas tradicionales, pero debe tenerse en cuenta ciertamente en microtraps 
magnético que las dimensiones características son de orden 1 mm . 

  
 Unlike the situation in liquid Helium, atomic vapors 
undergoing Bose-Einstein condensation (BEC) in 
magnetic traps are very rarefied1. As a consequence, 
the free-boson model works extremely well. 
Interaction effects, computed in mean-field 
approximation, are shown to decrease the critical 
temperature for BEC in a few percent2. Still lower 
corrections come from the approximation of the one-
particle discrete spectrum by a continuum of states, 
the so-called “finite-N” corrections2, which also 
decrease the critical temperature.  
 
 In the present paper, we show that a relatively 
important increase of the critical temperature (up to 
45 %) could be related to trap anharmonicities at 
"long" distances from the center. By long distances, 
we mean around forty times the radius of the first 
atomic orbit along the elongated direction in the trap 
potential, i.e. around 200 µm. In the commonly used 
traps, which characteristic dimensions are a few 
centimeters, the belief is that anharmonic effects 
should be very weak at distances of 200 µm. 
Nevertheless, we present an exampIe of a recent 
experiment3, in which the measured values of  
the total number of atoms in the trap and the critical 
temperature are not consistent unless anharmonicity 
(or other) effects raising Tc are included. On the 
other hand, the trap potential should certainly be 
anharmonic at 200 µm in the recently developed 
atomic microtraps4, which characteristic dimensions 
are of order 1 mm. 
 
 

 In the continuum free-boson model, the critical 
temperature is simply estimated from the conditions 
N0 = 0, µ = 0 in: 
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 N0 is the number of atoms in the condensate, and  
∈ ≥ 0 is the one atom excitation energy. The chemical 
potential takes values µ ≤ 0. g is the density of states. 
 
 Magnetic traps with cylindrical symmetry are very 
common. The trap potential, coming from the interac-  
tion of an hyperfine atomic species with the magnetic 
field, is proportional to the latter which, near the trap 
center, has a minimum and is written as: 
 
           B(ρ, z) = B0 + bρρ2 + bzz

2.    (2) 

 
 The corresponding harmonic oscillator frequencies 
are ωρ and ωz. It is useful to define ω0 = ,)( 3
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terms of which the level density is written  
g(∈) = ½ ∈2/ ,)( 3

0ωη  and the critical temperature 
becomes:  
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where ζ(x) = ∑
∞

=1n

xn/1 is the Riemann Zeta function.     
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 The corrections to Tc due to interaction or ifnite-N 
effects take, respectively, the form2,5: 
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where r0 = ,)m/( 0ωη  a is the s-wave scattering 

length, and .3/)2( z ρω+ω=ω Typical values N ∼ 106, 

a/r0 ∼ 10-2 lead to small numbers in the r.h.s. of 
Equations (4,5). As mentioned, the corrections (4) 
are computed within mean-field theory. More 
elaborated variational calculations based on diffusion 
Monte-Carlo6 or hypernetted chain theory7 support 
the validity of mean-field approximations at the 
relevant particle densities. Notice that both corrections 
(4) and (5) are small and make Tc decrease. In a 
general power-law trap, the corrections may be of any 
sign and their relative magnitudes may be still 
greater5. However, for usual magnetic traps one 
expects a harmonic potential coming from (2), at least 
in the vicinity of the trap center. 
 
   Let us suppose that at long distances, r >> r0, 
anharmonic terms are relevant in (2). In fact, one 
expects a saturation of the magnitude of B, which 
should approach the bias field value as the distance 
increases. In a trap potential that saturates at long 
distances, the density of energy levels decreases at 
high energies8. It means that the occupation of the 
ground state is increased, and thus the critical 
temperature is raised. 

 
Figure 1.  Shift in the critical temperature as a function 

of the energy cutoff. Solid line: corrections 
coming from Equation (6), crosses: finite-N 
calculations for the trap used in Reference 3. 

 
 We will model the density of levels of the 
(saturating) anharmonic potential in the simplest 
way: by truncating the one-particle spectrum. It means 

that an upper integration limit, ∈∈max, is set in (1). The 
critical temperature is thus determined from: 
 

t3ζ(3) = ζ(3) + Li3(e
-tx) - tx Li2(e

-tx) 
2
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+ ln(1 – e-tx), 
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where we have defined ),Tk/(x,T/Tt 0
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kn n/z  is the polylogarithm function. 

 
 The corresponding correction to ,T0

c  i. e. 1/t - 1, is 
shown in Figure 1 as a function of x. It is around 10 % 
when ∈max ≈ 4kB

0
cT . As kB

0
cT ∼ z

310 ωη  in many of 

the experiments, energies of order 4kB
0
cT  involve 

particle orbits of radius around 60 roz. On the other 
hand, when ∈max/kB ≈ 2.5 0

cT , corrections to 0
cT  reach 

40 %, and the cutoff distance is around 40 r0z. A fit to 
the long-x tail of the curve leads to: 
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 In quality of example, let us consider the trap used 
in Reference 3, in which BEC of spin-polarized 
Helium was achieved. The example is quite 
interesting because independent measurements of N 
and Tc are reported. The authors-provided frequencies 
are vz = 115 Hz, vρ = 1090 Hz. The critical temperature, 
number of atoms in the trap and the scattering length 
are estimated as Tc = 4.7 ± 0.5 µK, N = (5 ± 2.5) x 106, 
a ≈ 16 nm, respectively. Turning back to Equations 
(3-5), we obtain that to a temperature Tc = 4.7 µK, 
corresponds to a number of atoms N = 1.4 ×× 107, 
well above the error bars. On the other hand, if we 
take the lowest value Tc = 4.2 µK, then the number 
of atoms is N = 8 ×× 106, a value closer but still 
outside error bars. The reason for this apparent 
discrepancy may be either the rough estimation of N, 
or the anharmonicity corrections, which have not 
been included. 
 
 In conclusion, we have shown that the saturation of 
the magnetic field at distances around 200 - 300 µm 
from the trap center leads to a decrease of the 
density of energy levels, and thus to an increase of 
the ground-state occupation and to an increase  
of Tc. We have modeled the decrease of the level 
density simply by means of an energy cutoff  
in the single-particle spectrum. The corresponding 
correction to 0

cT  partially cancels out with interaction 
or finite-N effects, both of which lower the critical 
temperature. Although expected to be small, detailed 
calculations of the magnetic field configurations in 
the commonly used traps are needed in order to 
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evaluate the role of anharmonicity corrections. With 
regard to the atomic microtraps, which characteristic 
dimensions are of order 1 mm, anharmonicities are 
expected to be very important and should be taken 
into account. 
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8We assume that the confinement potential decays abruptly above r0. The density of energy levels 

refers to states in which the particle motion is confined inside the trap volume, i.e. the 
discrete spectrum. The contribution of states in the continuum spectrum (in which the 
particle is free to move in all the space) to the trap thermodynamic properties is proportional 
to the probability of finding the particle inside the trap, i.e. equal to zero. 

 


