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ABSTRACT 
Starting with the canonical equations of a electromagnetic field and its equivalence with a system of 
oscillators the fields corresponding to an isolated point structural particle (p.s.p.) and in presence of 
stationary and homogeneous electric and magnetic fields are obtained. It is showed that the state of the 
p.s.p. can be obtained through its electromagnetic analogue, neglecting the terms of the subparticles 
radiation losses. 
 
RESUMEN 
En este trabajo, a partir de la equivalencia entre las ecuaciones canónicas del campo electromagnético y 
un sistema de osciladores, se obtienen los campos electromagnéticos equivalentes a una partícula 
estructural puntual (p.s.p.) aislada y en presencia de campos eléctricos y magnéticos homogéneos y 
estacionarios. Se demuestra que el estado de la p.s.p. puede ser representado por su análogo 
electromagnético si se desprecian los términos que expresan las pérdidas por radiación de las sub-
partículas.     
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 Since the early studies of Schrödinger [1] on 
building a classical theory of a particle with spin, a lot 
of work has been carried out in order to develop 
models and to analyze physical implications of such 
particle. The main difficulty of the large number of 
theoretical studies devoted to this matter [2] is that 
the notion of spin is introduced in mathematical 
formalisms together with other hidden variables 
which have no explicit physical meaning. Besides, in 
the models mentioned in [2], either the particles are 
not point objects or the theory can be called classical 
only formally. In the papers [2-5] the theory of the 
point structural particle (p.s.p.) was developed, that 
is, a classical theory for a point particle with spin and 
other variables that have a clear physical meaning. 

 The straightforward derivation of a relativistic 
model of a p.s.p. is difficult since it involves 
relativistic equations of motion of a many particle 
system.  The aim of this work is to present an 
alternative approach based on the equivalence of a 
p.s.p. and an electromagnetic field. It allows to use 
the intrinsic invariance of the electromagnetic field 
under Lorentz transformations. To this purpose an 
isolated p.s.p. and an uncharged p.s.p. in presence 
of homogeneous and stationary electric and 
magnetic fields are analyzed. 

 The organization of the paper is the following.  
In Section II we briefly describe the model of the 
point structural particle and the general procedure. In 
Section III the results are presented and discussed. 
Finally, in Section IV some conclusions are drawn. 
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 A p.s.p. is a cluster of point subparticles of masses 
mj, charges ej, coordinates qj and velocities dqj/dt. 
Due to their interaction they remain confined in small 
region of space  
 
                          0kj l)t(q)t(q ≤−                           (1) 

 
for arbitrary values of k, j and t. 
 
 Such condition leads to describe the p.s.p. through 
magnitudes that characterize it as a whole: the total 
mass m, the charge e, center of mass coordinate q 
and momentum p, besides, total angular momentum 
J and total energy E. Time evolution of this quantities 
is determined by an infinite set of coupled differential 
equations. This equations system is truncated using 
the small parameters l0 and 
 

           
m
e

m

e
Z

j

j
j −=                           (2) 

 
 Then, a closed system of equations for the 15 
independent variables is obtained [4,6-8]: 
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with energy 
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where φ(r),ϕ(r),A(r) are the potentials of the external 
gravitational, electric and magnetic fields and G,E 
and H are their respective intensities.  
 
 Although the relativistic invariance of electro-
magnetic fields is restricted to those ones which 
obey Lorentz gauge, as a first approach we employ 
Coulomb gauge. Using a convenient normalization 
canonical equations of such field become equivalent 
to a system of harmonic oscillators [9].  We use the 
inverse procedure to assign to each system its 
corresponding field. 
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 The energy of an isolated p.s.p. is: 
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being ω0 the proper frequency. 
 
 We propose an electromagnetic field that satisfies 
both Maxwell equations and Coulomb gauge. 
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 If we choose  
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the energy of the field will be equal to the internal 
energy of the p.s.p. 
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 For an uncharged p.s.p. in an homogeneous 
electric field we obtain: 
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and with the electromagnetic field 
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the energy inside the normalization box is  
 

                   E = 
2
0

2222
0

2
E

Ed
2
f

2
d

ω
κ+−

κ
+

κ
ω

                (10) 

 
 It is the same that the internal energy of the 
particle [10] except for the last term. This term is 
proportional to the charge of the subparticles and the 
electric field intensity. It is related to radiation losses 
of the subparticles [9], which is implicitly included in 
the Maxwell equations and its not considered in the 
model of the p.s.p.  
 
 In the case of an uncharged p.s.p. in an 
homogeneous magnetic field the relevant equations 
of motion of the internal degrees of freedom are: 
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where 
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fll and f⊥ are respectively the components of the dipolar 
velocity parallel and perpendicular to the spin axis. 
 

2
1ω  = 

2
c

2
2
0

m
Hκ−ω , 

 
       2

2ω  = g2H2     (13)     
 
 Following the same procedure we choose 
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yielding an energy  
 

E = 
mc

)Hd(p

mc2

)Hp(

mc2

)Hf(
gSH

2
f

2
dw

2
0

2

2

2
0

2

2222
0 ×+

ω
×+

ω
×−−

κ
+

κ
 

 (15) 
 
 The first three terms represent the internal energy 
of the p.s.p. [10] while the later ones have the same 
radiation origin that in the case of homogeneous 
electric field. 
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 In this paper we proposed classical electro-
magnetic fields which are equivalent to an isolated 
p.s.p. and a p.s.p. in presence of homogeneous and 
stationary electric and magnetic external fields.  This 
allows to obtain the equations of motion of a p.s.p. 
from that ones of the analogue system and 
represents a first step towards the building of a 
relativistic model of a classical particle with spin. 
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