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Figure 2: Shapes of air in frictional fluids. (a) frictional fingers (low rate, low packing fraction, high stiffness), (b) stick slip bubbles (low rate,
intermediate solid fraction, low stiffness), (c) fluidized front “corals” (intermediate rate), (d) viscous fingers (high injection rate) and (e) fractures

(high packing fraction).

Stick slip bubbles. Fig. 2 (b) shows a string of bubbles that have
appeared in a stick slip fashion, one by one, at approximately
10 minutes intervals. The pump rate is the same as for the
frictional fingers, but by either increasing the packing fraction
or by increasing the compliance of the system (or both), the
dynamics changes abruptly to this new dynamic mode. Each
bubble scoops up a thick granular front, and breaking through
this front requires a high gas pressure. In the stationary period,
the constant driving of the pump compresses the gas and the
pressure slowly builds until the jammed granular front finally
yields. The interface yields at its weakest point, from which
a narrow channel breaks through the jammed packing. The
compressed gas expands, and a bubble inflates in the granular-
liquid mixture.

VISCOUS REGIME

Fluidized front (corals). At flow rates greater than roughly
0.1 ml/min, the motion of the front is fast enough that fluid
forces inside the packing overcome friction and prevent
jamming of the front. The active front is continuously fluidized
by the moving interface, and we are in a domain where viscous
forces dominate the dynamics. Fig. 2 (c) shows a peculiar
looking “coral” structure that grows at intermediate flow rates.
The pattern develops in a two-stage process: first a bubble
expands. Then narrow fingers start to invade the fluidized
front surrounding the bubble. The less viscous gas penetrates
the (more viscous) fluidized mixture driven by the pressure
gradient across the front in a process of local viscous fingering.
When one finger gets ahead of the rest, it accelerates, evolving
into another bubble.

Viscous fingers. Cranking up the pump rate above 10 ml/min

results in another transition in the system: As Fig. 2 (d)
shows, there is no longer a dark front of accumulated granular
material surrounding the interface. The granular material is re-
suspended by the flow, and we are now effectively dealing with
a granular suspension. The Saffman-Taylor instability [9] in
granular suspensions has been studied by other authors [3,4],
and like Chevalier et al. [3], we find an early destabilization
and branching of the viscous fingers due to the noise associated
with the granularity of the suspension (Fig. 2 (d)).

SOLID REGIME

Fractures. What happens when we increase the packing
fraction considerably? At @ ~ 0.9 the granular material fills the
gap in the cell, but is not fully compacted into a close packed
configuration. The material is a solid, yet deformable (porous)
medium. Fig. 2 (e) shows that injection of gas into this system
results in fractures. The fractures are several particle diameters
wide, and the morphology is fractal of appearance. The
fractures grow intermittently, in a stick slip fashion similar to
the bubbles in Fig. 2 (b).

Porous media. If the packing fraction is increased further, the
system ultimately reaches the close packing limit (¢ = 1), and
is effectively a consolidated porous medium. The displacement
of fluid occurs in the pore space network defined by the rigid
granular matrix. Local fluctuations in the threshold capillary
pressures of pores, in addition to the viscous pressure gradient
in the cell, determine the displacement dynamics [9-12].
There are two main pattern formation modes: Capillary
fingering at low rates, where viscous forces are negligible and
pores are invaded in sequence depending on their threshold
capillary pressure, and viscous fingering at high rates, where



the displacement dynamics is governed by the pressure field
in the cell. Capillary fingering progresses from pore to pore in
random directions, forming compact structures in an invasion
percolation process. Viscous fingers in porous media on the
other hand follow the pressure gradient in the cell generated
by the displacement of the fluid. They grow in thin branching
fingers towards the edge of the cell in fractal structures that
look similar to those obtained in diffusion limited aggregation
(DLA) processes.

PHASE DIAGRAM

Summarizing the results, Fig. 3 shows a qualitative phase
diagram of the morphologies as a function of compression rate
(q) and the inverse of the packing fraction (¢), i.e. from high
to low packing fraction. Both axes are log-scale, and the phase
borders are intended as “guides to the eye” only.

The medium changes character from porous medium to
deformable solid to frictional fluid as the packing fraction
decreases. Each of these regimes have characteristic
morphologies associated with them, and at low rate these are
capillary fingering (porous media), fractures (deformable
media) and frictional bubbles and fingers (frictional fluids)
respectively.

The fluid dynamics of granular mixtures changes character from
frictional to viscous flows (fluidized front, viscous fingering) as
the rate is increased, and the two-phase flow in porous media
undergoes a transition from capillary to viscous fingering for
increasing rate. The fracture mode seems reasonably rate-
independent within the limited parameter range studied here.
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Figure 3: Phase diagram of pattern formation modes obtained by
varying the packing fraction and compression rate over several orders
of magnitude.

HYDROPHOBIC GRAINS

So far we have considered displacement of a granular fluid
mixture by a gas. While the pattern formation is to a large
degree governed by the specifics of the system, it is interesting
to speculate whether the mechanisms are of a more general
nature. Figure 4 shows the result of an “inverted” experiment:
A layer of dry hydrophobic grains (0.1 - 0.4 mm diameter) is
confined in a Hele-Shaw cell (gap ~ 0.6 mm). As water is slowly
injected into the cell, the dry hydrophobic material is pushed
aside by invading water fingers (seen in black in the figure). The
resulting patterns and the dynamics are similar to the frictional
fingering process depicted in Figure 2 (a) as it is controlled
by the capillary forces at the interface, and the frictional
interactions in the granular material. The specific nature of
these interactions are however expected to be different (dry vs.
lubricated grains, incompressibility of the invading phase etc.),
and will be investigated in future work.

Figure 4: Fingers of water (black) penetrating dry hydrophobic granular
material. Scale bar: 1 cm.

CONCLUSIONS

We find that the fluid dynamics of granular mixtures is highly
complex indeed. Interactions between pressure, frictional,
viscous and capillary forces conspire to produce an ever
changing landscape of shapes and patterns as the experimental
conditions change. Here we have presented characteristic
morphologies that emerge as a result of displacement by a
gas, and we have outlined the physical mechanisms at play. By
mapping the displacement dynamics onto a phase diagram, we
provide a means of predicting the type of dynamics occurring
for a given set of conditions.
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CONTRIBUTIONS

PIPE FLOW AS AN EXCITABLE MEDIUM

EL FLUJO DE TOBERA COMO MEDIO EXCITABLE

D. BARKLEY
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The dynamics of turbulent patches (puffs) in pipe flow are
related to the dynamics of action of potentials in nerve cells.

Se relaciona la dinamica de los “parches turbulentos” (“puffs”)
en el flujo por tubos, con la dindmica de los potenciales de
accién en células nerviosas.

PACS: Flow transition to turbulence, 47.27.Cn; action potential propagation in nervous system axons, 87.19.lb,pipe flow,

47.60.-i

INTRODUCTION

This work explores the connection between the transition to
turbulence in pipe flow and the dynamics of excitable media,
as exemplified by nerve cells. The primary goal is to leverage
years of extensive analysis of excitable media to understand the
dynamics of pipe flow. There are several active areas of research
in pipe flow that can be analyzed in this context [1, 2].

Figure 1 conveys the essential message and serves to motivate
this work. Two very different physical systems are shown. The
first is pipe flow, Fig. 1 (a). Fluid moves through a straight
pipe with a circular cross section. The pipe is considered to
be sufficiently long that end effects are not important. In the
quiescent, or unexcited state, flow through the pipe is laminar
and individual fluid parcels move in straight lines parallel to
the pipe axis. The second system is the axon of a nerve cell,
Fig. 1 (b). Here in the quiescent state, or resting state, the cell
membrane is polarized with the inside of the cell at a lower
voltage potential than the outside. In both systems the quiescent
state is stable to small, sub-threshold perturbations and hence
the systems remain in the quiescent state indefinitely unless
perturbed sufhiciently.

Consider now the response of these systems to large,
super-threshold, perturbations. For pipe flow, Fig. 1 (¢), a
typical perturbation might be the injection of a small jet
of fluid in the upstream region of the pipe [3]. Assuming
the non-dimensional flow rate is in the relevant range, a
localized patch of turbulence can be created which moves
down the pipe at approximately constant speed. Such a
patch of turbulence is called a puff. A typical experimental
measurement of a puff would be the fluid pressure near the
pipe wall for example. A key point is that the strength and
spatial extent of the puff are essentially constant as the puff
moves down stream and these features are determined by
the nonlinear dynamics of the flow and not by the initial
perturbation.

Likewise, a resting nerve axon can be stimulated by the
injection of current, Fig. 1 (d). The response is a pulse
of depolarization, known as an action potential, which
travels down the axon. The standard measurement is the
membrane potential, i.e. the voltage difference between the
inside and outside of the cell. As with the puff, the shape and
speed of the action potential are dictated by properties of
the medium and not the stimulus initiating it.
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Figure 1: Cartoon illustrating the analogy between pipe flow and a
nerve axon. In the absence of stimulation, both systems remain in the
quiescent state: (a) flow through the pipe is laminar and (b) the axon is
negatively polarized. Following an appropriate stimulation at some time
t,,» a localized patch of turbulence moves down the pipe (c) and an action
potential propagates down the axon (d).

While Fig. 1 is only a cartoon, the shape of the pressure
and voltage signals shown are representative of those of
real systems [3, 4]. The two signals share the same features
apart from the fact that they are approximately the mirror
images of one another. This is not an coincidence, but rather
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a manifestation of the fact that pipe flow is an excitable
medium, similar in many respects to a nerve axon.

EXCITABLE MEDIA

We begin by reviewing concepts from excitable media. For
the moment ignore the spatial aspects and just consider
local excitable dynamics. Excitable systems are characterized
as follows. (See Fig. 2.) They have a linearly stable fixed
point, known as the rest state, such that small, sub-threshold
perturbations of the rest state return to it without large
excursion. Excitable systems additionally possess a nonlinear
threshold such that super-threshold perturbations are highly
amplified into what is called the excited state. The system
does not remain in the excited state indefinitely, but moves
into a refractory (or recovering) state and then eventually to
the rest state. In the refractory phase, the system is further
from the threshold than when in the rest state and hence is
it more difficult to excite the system from the refractory state
than from the rest state. In some cases it is impossible to excite
the system directly from the refractory state. Generally the
timescale associated with the nonlinear amplification into the
excited state is very much faster than the time scale associated
with relaxation to the rest state. The timescale associated with
recovery varies considerably from system to system. (See [5, 6]
for background on excitable systems.)
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Figure 2: Schematic diagram illustrating excitability. The states of a
characteristic excitable system are shown as a function of time. The rest
state (blue) is a fixed point. Sub-threshold perturbations (green) of the
rest state return directly to it. Super-threshold perturbations (red) are
amplified into the excited state. They then go through a refractory phase
before returning to the rest state.

Nerve cells are the classic example of an excitable system. The
electrophysiological basis of excitability was uncovered by
Hodgkin and Huxley in their groundbreaking study of squid
giant axons [4]. The details are not important here, and rather
than focus on the full mechanism, we consider the simplified
FitzHugh-Nagumo model [7]. This model captures the
essence of excitability in many physiological system and yet in
amenable to straightforward analysis. In its most basic form
the model is given by the following equations
3

V=V—V?—W+I, (1)

W =a(V+bW +c). (2)

The variable V corresponds to membrane voltage while the
variable W captures the collective effect of slow recovery of

ion channels in the cell membrane. V is called the excitation
variable and W the recover variable. I represents the magnitude
of a stimulus current. a, b, and ¢ are parameters with typical
values a =0.08,b=-0.8,c=0.7.

Figure 3 shows a phase portrait for the FitzHugh-Nagumo
model together with illustrative trajectories. The dynamics in
phase space is organized by the system nullclines: the curve
on which ¥ and W are zero. The V-nullcline is cubic and
the middle branch is responsible for the nonlinear threshold
for excitation. W provides linear negative feedback and
importantly is responsible for the slow recovery. Trajectories
and corresponding time series are shown for sub-threshold and
super-threshold perturbations. Thus, while the model does not
contain many physiological details, it does capture the essence
of excitability and provides a clear geometric picture of it.
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Figure 3: Dynamics of the FitzHugh-Nagumo equations. (a) Phase
portrait showing the V-nullcline (red) and W-nullcline (blue) together
with trajectories starting from two initial conditions. Both trajectories
eventually approach the stable fixed point where the nuliclines intersect.
(b) Time series for the two trajectories shown in (a). (c) Action potential
in the model with spatial coupling (excitable medium). Both the V (red)
and W (blue) variables are plotted. A solitary pulse propagates to the
right with fixed shape and constant speed. There is a refractory tail
behind the pulse.

We return now to spatial aspects and excitable media. For
modeling the propagation of action potentials along a nerve
axon, the spatial dimension of the axon is taken into account
and the FitzHugh-Nagumo model becomes

V3
a,V:V—?—W+I+amV, 3)
oW =alV+bW +c¢), (4)

where x represents distance along the axon. Figure 3 (c) shows
a propagating action potential in the model. Once initiated,
an excitation is able to sustain itself through propagation: the
pulse excites adjacent medium (to the right in the figure) from



the rest state to the excited state, while at the back side of the
pulse, the is medium becomes un-excited, going through the
refractory phase before returning to the rest state. Within the
refractory tail behind the pulse it is not possible to re-excite
the system.

PIPE DYNAMICS

Consider now the behavior of puffs in transitional pipe flow.
Figure 4 shows a puff from direct numerical simulation
of the Navier-Stokes equations [1, 8]. The flow is from left
to right. A localized patch of turbulence travels down the
pipe (rightward) at approximately fixed speed, maintaining
approximately constant size. The two variables plotted reveal
the strong similarity between puffs and the action potentials
just considered: turbulent fluctuations play the role of the
excitation variable while the mean flow, or mean shear, plays
the role of the recovery variable.
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Figure 4: Puff in a direct numerical simulation of transitional pipe flow
in a pipe 200 diameters long at Reynolds number 2000. The turbulent
fluctuations and mean flow are sampled along the pipe axis at one instant
in time. Specifically, the red curve shows the magnitude of transverse
fluid velocity (scaled up by a factor of 6) while the blue curve shows the
centerline velocity, relative to the mean velocity. A visualization shows
the turbulent kinetic energy within the portion of the pipe containing
the puff.

To better understand the connection between pufts and action
potentials, consider the following model for transitional pipe
flow [1]

(, +Uax)q:q(u+r—1—(r+6)(q—1)2)+aqu,

(0, +Ud, u=¢(l—u)—euq—0 . u,

where g represents the turbulent fluctuations and u represents
the mean shear. The parameter r plays the role of Reynolds
number and U accounts for downstream advection by the
mean velocity.

The core of the model is seen in the g-u phase plane in
Fig. 5 (a). The trajectories are again organized by the nullclines.
The nullclines intersect in a stable, but excitable, fixed point
corresponding to laminar parabolic flow. This is the rest state.
The u dynamics with €, > € captures in the simplest way
the behavior of the mean shear. In the absence of turbulence
(@ = 0), u relaxes to u = 1 at rate €, while in response to
turbulence (g > 0), u decreases at a faster rate dominated by €,.

Values €, = 0.04 and €, = 0.2 give reasonable agreement with
pipe flow. The g-nullcline consists of g = 0 (turbulence is not
spontaneously generated from laminar flow) together with a
parabolic curve whose nose varies with 7, while maintaining
a fixed intersection with g =0 at u = 1 + 9, (0 = 0.1 is used
here). The upper branch is attractive, while the lower branch is
repelling and sets the nonlinear stability threshold for laminar
tlow. If the rest state is perturbed beyond the threshold (which
decreases with r like r'), g is nonlinearly amplified and u
decreases in response. The similarity to the nullclines for the
FitzHugh-Nagumo system are evident.

0 1000

Figure 5: Puffs in the model system. (a) Phase planes shows nullclines
for r = 0.7. The fixed point (1,0) corresponds to parabolic flow.
(b) Solution snapshot at r = 0.7. This solution is plotted in the phase
planes with arrows indicating increasing x. (c) Sequence of puffs at
approximately the maximum density supported by the system.

Figure 5 (b) shows a puffin the model and should be compared
both with the puff in Fig. 4 and with the FitzHugh-Nagumo
action potential seen in Fig. 3. Two important properties of
puffs can now be readily understood. The first concerns the
shape of the puff in relationship to that of the action potential.
While both structures are moving to the right, they do so
for different reasons. As already stated, the action potential
travels to the right by exciting the medium to its right. The
refractory tail is to the left. By contrast, for the turbulent puff,
the excitation from the rest state to the excited state occurs on
the left side of the puff and the refractory tail is on the right
side. (While not stated in these terms, the physics of this has
well understood since at least 1973 [9].) The reason the puft
moves to the right is due to the overall downstream motion
of fluid within the pipe. This is captured by the parameter U
in the model. In the absence of this downstream advection,
puffs move to the left (at least for most Reynolds numbers). If
experiments were routinely performed in a frame of reference
in which the mean flow were zero, the shape of the puffand the
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direction of propagation would be related exactly as they are
for action potentials in physiological media.

The other feature that is evident from this analysis concerns
the separation of adjacent puffs. It has been shown in pipe flow
that the degree of recovery downstream of a puft dictates how
susceptible the flow is to re-excitation into turbulence [10].
This effect is due to the refractory tails on the downstream side
of puffs —the slow recovery of u in the model. If one attempts
to excite a second puft closely behind a first puff, either the
second puff will fail to excite, or if it does, it will either combine
with the first puff or move away from it until a characteristic
separation is established. Figure 5 (c) shows a number of pufts
in the model. The density is at, or nearly at, the maximum
supported by the medium.

CONCLUSIONS

In this short paper I have presented ideas connecting the
dynamics of transitional pipe flow to the behavior of action
potentials in excitable media. I have argued that these systems
are closely related and that this relationship is helpful in
understanding the dynamics of pipe flow. The analysis can be
extended to include more realistic behavior for turbulence,

since after all, turbulence is not a single scalar quantity.
Extending to other shear flows is difficult, but work as be begun
along these lines and appears promising [2].
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