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configuration where the particle normal stays perpendicular to 
the magnetic field. Additionally, several factors of the clay water 
system, such as gelation and long range colloidal interactions, 
makes the nematic phase in a clay suspension different from 
ordinary liquid crystals. From the images of the evolution of 
the periodic patterns (Figure 1) it can be seen that the stripe 
formation commences at the top of the nematic sol, close to 
the isotropic-nematic interface. This could be due to a viscosity 
gradient in the nematic sol along the capillary axis, i.e. lower 
viscosity near the isotropic-nematic interface and highest near 
the transition to the nematic gel.

Figure 2 shows repeated measurements with identical samples, 
using magnetic fields from 0.5 to 1 Tesla. The threshold value 
for the inhomogeneous Frederiks transition with this setup is 
found to be just below 0.5 Tesla. Because of irregularities in 
the nematic domains, and the limited extent of the nematic 
sol region, it is with the present samples not possible to obtain 
precise values for the wavelength for a specific magnetic field 
strength. However, it seems clear that there is a decrease in 
wavelength when the magnetic field is increased, and close to 
0.5 Tesla, the wavelength looks to diverge, as expected. 

Figure 2: Stripe patterns for magnetic fields from 0.5 to 1 Tesla in the 
same sample. The pictures were taken at the point in time when the 
stripes were most clearly defined.

For all the measurements the wavelength shows a tendency to 
increase as we move down in the sample, which could be due to 
a viscosity gradient in the nematic gel as the concentration of 
particles in the nematic sol increases downwards. Furthermore, 

the duration of the instability decreases with increasing field 
strengths: the whole process lasts for over 3 hours with magnetic 
fields close to the threshold, and under 2 hours for fields of 1 
Tesla. For low field strengths, the first sign of stripe formation 
appears after 10 minutes, while for the highest strengths it can 
take less than five minutes. The periodic structures are clearly 
transient phenomena, and are seen to decay soon after the 
magnet is removed. The lifetime is around 2 hours after which 
there is no longer any pattern with systematic structure.
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CONTRIBUTIONS

INTERMITTENCY OF FLUID IMBIBITION 
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We present an experimental study of the global velocity spatially 
averaged over the length scale l, V

l

(t), of an air-liquid interface 
during the forced-flow imbibition of a viscous wetting liquid in 
a disordered medium. Thanks to a high resolution fast camera, 
we have followed directly the imbibition front and observed 
a complex dynamics, governed by power-law distributed 
avalanches on a wide range of durations and sizes [1, 2]. 
We characterize here this intermittent behavior by studying 
the statistical properties of the global velocity increments 
DV

l

(x) / V
l

(t + x) - V
l

(t) for various time lags x. In particular we 
show that the shape of the PDF of DV

l

(x) evolve with increasing 
x from fat tail exponentially stretched PDFs towards a Gaussian 
PDF above a characteristic time xc, which corresponds to the 
characteristic avalanche duration.

Presentamos un estudio experimental de la velocidad global 
promediada espacialmente a escala l, V

l

(t), de una interfaz 
aire-líquido en "embebimiento" a flujo constante en un medio 
desordenado de un líquido viscoso que moja el medio. Mediante 
una cámara de alta resolución hemos seguido directamente el 
frente de "embebimiento", observando una dinámica compleja 
gobernada por avalanchas distribuidas en ley de potencias en 
un amplio rango de duraciones y tamaños [1, 2]. Caracterizamos 
este comportamiento intermitente estudiando las propiedades 
estadísticas de los incrementos de la velocidad global 
DV

l

(x) / V
l

(t + x) - V
l

(t), para varios intervalos de tiempo x. 
En concreto mostramos que la forma de la distribución de 
probabilidad de DV

l

(x), a medida que x aumenta, evoluciona 
de una distribución de colas largas a una distribución Gaussiana 
para x mayor que un tiempo característico, xc, que corresponde 
a la duración característica de las avalanchas.

PACS: Fluctuation phenomena statistical physics, 05.40.-a; structure and roughness of interfaces, 68.35.Ct; fluid flow through 
porous media, 47.56.+r; fractals fluid dynamics, 47.53.+n 

INTRODUCTION

Fluid invasion in disordered media -similarly to a wide variety 
of slowly driven heterogenous systems such as the motion 
of magnetic domain walls in disordered ferromagnets [3], 
wetting contact lines on rough substrates [4] or crack growth 
in heterogenous media [5, 6], exhibits a burst-like correlated 
dynamics spanning a very broad range of temporal and spatial 
scales [7-9]. Such a complex dynamics, generically referred to 
as "crackling noise", is the result of several competing forces 
acting at different length scales: while the fluctuations in 
capillary forces and the heterogeneous permeability destabilize 
the fluid interface, viscosity and surface tension damp the 
resulting interfacial fluctuations, leading finally to long-
range correlations along the imbibition front. The correlation 
length, which measures the extent of the lateral correlations, 
is given by l c Ca= κ / , where l is the permeability of the 
medium, and Ca the capillary number. As a consequence, 
imbibition fronts in a disordered medium undergo a complex 
kinetic roughening process characterized by an intermittent 
dynamics. In the limit Ca " 0 the system displays critical 
interfacial fluctuations [10].

More specifically, using high resolution fast imaging in 
quasi two-dimensional forced-flow imbibition, we have 
shown recently that the front motion is driven by localized 
avalanches, power-law distributed both in sizes and durations, 
with exponentially decaying cutoffs that are related to 
the lateral correlations of the interface and diverge as the 
driving velocity decreases [2]. We demonstrated that the 
critical spatiotemporal dynamics observed during forced-
flow imbibition can be described within the framework of a 
pinning-depinning transition. Moreover, we have shown that 
these local avalanches lead to a complex temporal activity 
of the global advancement of the front, with in particular 
large global velocity fluctuations that follow an asymmetric 
non-Gaussian distribution with a large exponential tail, due to 
the presence of spatial correlations along the front and finite-
size effects [1, 11].

In the present work we go further on in the investigation 
of the global dynamics of imbibition fronts, and quantify 
the global intermittent behavior. Specifically, we analyze 
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the statistical properties of the global velocity increments 
DV

l

(x) / V
l

(t + x) - V
l

(t) for various time lags x, and we show 
that the PDF of DV

l

(x) evolves with increasing x from fat tail 
exponentially stretched PDFs towards a Gaussian PDF above a 
characteristic time xc, which corresponds to the characteristic 
avalanche duration.

EXPERIMENTAL SETUP

The setup used in the present work (Fig. 1) has been previously 
described in Ref. [2]. It consists on a Hele-Shaw (HS) cell of 
190 × 500 mm2 (width × length), made of two parallel thick 
glass plates separated by a narrow gap spacing. We introduce 
dichotomic fluctuations in space of the gap thickness, 
b = 0.46 mm and b - db = 0.40 mm. These spatial fluctuations 
are provided by copper patches of size 0.4 × 0.4 mm2 and height 
db = 0.06 mm, randomly distributed over a fiberglass substrate 
attached to the bottom plate and filling 35% of the total area. 
The patches do not overlap, and their orientation is shown in 
the bottom panel of Fig. 1.

Figure 1: Sketches of the experimental setup. Top panel: the control 
parameter v is set by the syringe pump. The zoom on the right is a lateral 
view of the disordered HS cell, showing the parallel glass plates (G) and 
the fiberglass (FG) substrate with the copper obstacles (Cu). Bottom 
panel: sketch of the cell from top. The right end is open to air. The 
oil penetrates from the injection point at constant flow rate (constant 
average velocity v) and fills the porous medium model, displacing the 
resident fluid (air).The zoomed region shows the disorder patches and 
their orientation with respect to the fluid front.

We use a silicone oil (Rhodorsil 47V) as invading fluid, with 
dynamic viscosity µ = 52 mPa·s, density t = 1000 kg/m3, and 
oil-air surface tension v = 20.7 mN/m at room temperature 
 (23 ºC). The oil wets perfectly the glass plates, the copper patches 
and the fiber-glass substrate. The fluid is driven into the cell at 
a constant flow rate imposed by a syringe pump. Here, we will 
study the fluid invasion for one imposed flow rate corresponding 
to a mean front velocity v = 0.131 mm/s. Thus, both the local 
front height and the local velocity are correlated along the 
fluid interface up to the length scale l c v= κ µ σ/ ( / )  
= 7 mm, that corresponds to 5% of the system size L = 136 mm. 
We have performed 19 different experiments that explore 
various disorder realizations.

In the course of an experiment the interface propagates about 
150 mm in the y direction before reaching a statistically 
stationary state with constant RMS fluctuations of the front 

height. The motion of the oil-air front is then recorded using 
a Motion Pro X3 plus video-camera with 1280 pixels in the 
transverse direction and 256 to 280 pixels in the direction 
of fluid advancement (y). The typical spatial resolution is 
r = 0.106 mm/pixel. We record about 10000 images per 
experiment at 100 fps (frames per second). An edge-tracking 
algorithm is applied to obtain the front position h(x,t). In order 
to measure the local velocity v(x, h(x,t)) of the front we use 
a method developed for slow crack growth in heterogeneous 
materials [5], which consists on computing the waiting time 
wt(x, y = h(x,t)) that the front has spent on each position during 
its propagation. The local velocity map is then computed as 
v(x, h(x,t)) = r/wt(x, y = h(x,t)). Finally, from this local 
measurement, the global velocity of the front can be computed 
at any window size l, as V t v x t dx

l
l

l

( ) ( , ) .= ∫1

EXPERIMENTAL RESULTS

We will examine here the temporal fluctuations of the 
average velocity V

l

(t) as a function of the measuring 
window length scale l. As shown on Fig. 3, even though the 
injection rate is constant, we observe that V

l

(t) is a jerky 
signal with a complex intermittent behavior characterized 
by very large positive fluctuations or avalanches [1]. We 
consider an avalanche as the occurrence of V

l

(t) above an 
arbitrary threshold, chosen here as the mean velocity GV

l

(t)H 
 (which would correspond to the imposed velocity v in an 
infinite system). We define the size S and duration T of an 
avalanche in the form shown in the bottom panel of Fig. 3. 
The avalanche size S represents the extra displacement of 
the average front within the duration T.

Figure 2: The top panel shows the global velocity signal for 
l = L, clipped by its average value. In the bottom panel a single avalanche 
is depicted, with size S and duration T.

We focus now on the statistics of avalanche durations in two 
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cases, depending on whether the global velocity V
l

 is computed 
for l < lc or l > lc. The corresponding distributions of avalanche 
durations are plotted in Fig. 3. In the top panel (l > lc) we 
observe that the PDFs follow a power law with exponential 
cutoffs Tc that increase as the length of the measuring window l 
is shortened towards lc. The inset shows the evolution of these 
cutoffs with l. In the bottom panel (l < lc), in contrast, the 
PDFs are exponential and do not evolve.

Figure 3: Top panel: PDFs of avalanche durations T, for window sizes 
l = L/n ( > lc) with n = 1, 2, 4, 8, 16. Dashed lines are fits to power laws 
with exponential cutoffs. In the inset the cutoff duration Tc is plotted as 
a function of l. Bottom panel: PDFs of avalanche durations T, for window 
sizes l = L/n ( < lc) with n = 32, 40, 50. Dashed lines are fits to decaying 
exponentials with nearly the same characteristic duration Tc = 2.06 ± 0.06.

In order to study the temporal fluctuations of V
l

(t), we analyze 
the statistical properties of the global velocity increments 
DV

l

(x) for various time delays x, and observation length 
scales l. Such analysis has been originally proposed to study 
the intermittent behavior of turbulent flows [12]. We show on 
Fig. 4 the distributions of the normalized velocity increments 
Y / (DV

l

 - GV
l

H)/v
DV

l

 for logarithmically increasing time lags 
x and the global velocity measured at l = L/8. Interestingly, we 
observe that the shape of these distributions evolves through 
the temporal scales x from fat tail exponentially stretched 
distributions at small time lags towards Gaussian distributions 
above a characteristic time xc. Such behavior is indicative of 
the intermittent character of the fluid invasion process, and 
uncovers complex temporal correlations [12-14] for durations 
shorter than xc.

Figure 4:  Semilog plot of P(Y) vs Y / (DV
l

 - GV
l

H)/v
DV

l

 (dotted lines) 
for increasing time lags x and for l = L/8, shifted vertically for visual 
clarity. The PDFs evolve from fat tail distributions for l < lc to Gaussian 
distributions for x > xc - 2 s. A Gaussian PDF (dashed line) is also 
plotted as a guide to the eye.

To characterize and quantify the flatness of these PDFs, we 
compute the kurtosis k / E(x - GxH)4/v4 of the distributions 
P(DV

l

(x)), where E stands for the expected value. On 
Fig. 5 we represent the kurtosis vs. the time lag x, varying 
systematically the measuring window size l. We observe 
that the kurtosis decreases systematically as x and l increase. 
Above a characteristic duration xc it converges to the value 
kG = 3 of a Gaussian signal whenever l > lc, in agreement 
with the result of the previous Fig. 4. In contrast, for l < lc 
the kurtosis at large x saturates to k > kG, implying that the 
underlying statistics is not Gaussian. Below xc, the increase of 
the kurtosis at progressively shorter temporal scales seems to 
be close to a power law k ?x-a. The power-law exponent a 
measures the intermittency strength of the global velocity at 
short durations [14]. Its evolution with the measuring window 
length scale is reported in the inset of Fig. 5. 

Figure 5: Kurtosis of DV
l

(x) for l = L/n and n = 1, 2, 4, 8, 16, 40, 50, in 
log-log scale. The kurtosis is a measure of the flatness of the distribution. 
The dashed line represents the value for a Gaussian distribution, kG = 3. 
Solid lines are power-law fits, x-a, for small x. Inset: exponent a as a 
function of l.

Finally, we have extracted the characteristic time xc at which the 
kurtosis flattens out. Interestingly, the values of xc and especially 
their evolution with the measuring window size l appear very 
close to the typical durations of the global avalanches, defined 
as GTH. This similar trend is shown in Fig. 6.

Figure 6: Characteristic times xc and GTH vs l in log-log scale. The values 
of xc (squares) are obtained from analyzing the kurtosis of P(DV

l

(x)) with 
l = L/n and n = 1, 2, 4, 8, 16, 40, 50. Those of GTH (circles) are the mean 
duration of avalanches for l = L/n and n = 1, 2, 4, 8, 16, 40, 50. The solid 
line is plotted as a guide to the eye for l > lc.

CONCLUSIONS

By analyzing the statistical behavior of the differences in 
the global velocity of imbibition fronts in time lapses x and 
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observation windows l, we have shown that the dynamics 
displays the characteristic features of an intermittent process. 
The shape of the PDF of DV

l

(x) evolves with increasing x 
from a fat tail exponentially stretched PDF to a Gaussian 
PDF above a characteristic time xc, which corresponds to the 
characteristic avalanche duration.
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NUMERICAL STUDIES OF AEROFRACTURES 
IN POROUS MEDIA
ESTUDIOS NUMÉRICOS DE AEROFRACTURAS EN MEDIOS POROSOS

M. J. Nieblinga,b,c † , R. Toussaintb,c,d, E. G. Flekkøya,d  and K . J. Måløya,d  
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During the hydraulically induced compaction of a granular layer 
fracture patterns arise. In numerical simulations we study how 
these patterns depend on the gas properties as well as on the 
properties of the porous medium. In particular the relation 
between the speed of fracture propagation and injection pressure 
is here studied in detail.

Durante la compactación hidráulicamente inducida de una capa 
granular surgen patrones de fractura. En éste artículo estudiamos 
cómo éstos patrones dependen tanto de las propiedades del gas 
como de las del medio, utilizando simulaciones numéricas. En 
particular, estudiamos en detalle la relación entre la presión de 
inyección y la velocidad de propagación de la fractura.

PACS: Pattern formation in complex systems, 89.75.Kd; flow through porous materials, 47.56.+r; compressible flows, 47.40.-x

INTRODUCTION

Stress induced by fluid or gases can cause diverse materials 
to break and fracture. Such hydraulic fractures are a natural 
and common phenomenon in the field of volcanism and are 
artificially initiated to enhance the recovery of natural gas and 
mineral oil by fracturing the reservoir rock with pressurized 
fluids. Recently a new perspective on hydrofractures was added 
with the storage of supercritical CO2 attracting the interest of an 
increasing number of researchers. In this respect two scenarios 
are considered. First it is one option to inject CO2 into existing 
hydrofractures, and second the injection of the CO2 can create 
additional fractures [1, 2]. The typical components for such 
fractures are a porous material and a compressible gas. Injection 
of pressurized fluids in a porous material, deforming beyond 
the elastic limit, has been studied in granular materials in Hele-
Shaw cells, [3–8], with the injection of air or oil in systems with 
open boundary conditions, and during cyclic loading [9]. It 
was also studied in systems with a confinement for the grains, 
prevented from getting out of the cell, which allowed to observe 
the formation of thin fractures [10]. In this paper [10] it was 
found and discussed a criterion that the porous media and the 
fluid need to fulfill to allow the formation of fractures. For this 
purpose the gas’ viscosity was varied. It was further discussed 
how the shape of the fractures depend on the properties of the 
porous material and of the injected gas in simple 2 dimensional 
(2D) numerical simulations.

In contrast to the previous article we will not change the 
properties of the injected gas or the porous material in this 
present article. Here we explore in particular the effect of the 
amplitude of the gas pressure imposed in the source on the 

fracture morphology. Furthermore, all simulations here will be 
ran in a regime where fractures are created.

SIMULATION SETUP

As shown in Fig. 1 the setup consists of a cell with two glass 
plates separated by 1 mm. The gap between the plates is 
filled with particles. The empty space between the grains 
is saturated with a fluid that has the same properties as the 
fluid that is injected. Consequently, the only two media 
involved in the dynamics are the grains and the fluid. At the 
start of the simulations the average solid volume fraction of 
the grains is ts

(0) = 0.42. This starting solid volume fraction is 
homogeneous with negligible density fluctuations although 
the particles are at random positions. The value of ts

(0) = 0.42 
is chosen to be less than the possible maximum of ts

(max) = 0.60 
to allow compaction of the grains. On the inlet side of 
the cell the pressure is increased gradually in a set of six 
different simulations from a value of PI = 0.5 × 105 Pa to a 
value of PI = 2.5 × 105 Pa above the atmospheric pressure of 
P0 = 1.0 × 10 Pa. On the opposing side to the inlet the cell has 
an open boundary for the fluid but particles are not able to 
leave the cell here. In a real experiment, this could be achieved 
by using a net with a mesh smaller than the particles. The 
remaining boundaries are completely sealed for both media. In 
the simulation around 200 000 grains of diameter 140 ± 10% 
µm are involved. Finally, the pressure at the inlet is increased 
and maintained as a step function in time, at a steep ramp, and 
particles hardly move before the maximum injection pressure 
PI is reached. 

Rev. Cub. Fis. 29, 1E66 (2012)
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THEORY AND MODEL

Using a well tested numerical model we have the freedom to 
explore the parameter space independently. The details of the 
method can be found in [6, 11-17], and alternative models can 
be found in [18-22]. The model describes the fluid in terms 
of a pressure field while the porous medium is modeled by 
simulating discrete particles.

Semi−permeable
boundary

Particles

7cm

5cm

y

Air inlet

Glas plates

(b)

(a)

Sealing

x

Figure 1:  Numerical setup of the system.

THEORY AND SIMULATIONS

Dynamics of the gas phase. The equation for the evolution of 
the pressure P P P= +

0 , where P0 is the atmospheric pressure 
and P  the local pressure fluctuations is given by

φ
κ
µ

∂
∂

+ ⋅∇





= ∇ ⋅ ∇












− ∇ ⋅P
t

P P P P
f

u u

             
 (1)

Figure 2:  Snapshots during the simulations of the particle density in the 
Hele-Shaw cell, displayed for decreasing injection pressure PI from top 
to bottom and as a function of time (left to right). Low particle density 
appears brighter in the snapshots. Under air injection, fractures, fingers 
and dispersed bubbles of low particle density emerge and propagate. 
x- and y-axis units are given in cm. The y-axis specifies the distance from 
the inlet.

In this equation, the pressure is described in terms of the local 
granular velocity u, the viscosity µf of the gas, the local porosity 
z =1 - ts and the local permeability l. Eq. (1) is derived from 
mass conservation of the gas and the granular medium and by 
assuming a local Darcy law.

Dynamics of the particles. For the particles we basically use 
Newton’s second law

m
dv
dt

Pp
a

n

= + + − ∇F F FI d ρ
,

                   
(2)

with particle velocity vp, particle mass m, particle mass density 
tm, cell spacing h and the number density tn = tstm/m. FI 
are linear inter-particle solid contact forces. Fd is a viscous 
damping force during particle collisions. For Fa, the interaction 
with the side plates we assume that the normal stress Pg

⊥  in 
the granular packing is proportional to the in-plane stress Pg

  
by a factor m (Janssen hypothesis). Using further a Coulomb 
friction model we state that the frictional force Fa per particle 
with the glass plates is proportional to the normal stress by a 
friction coefficient c. With these two assumptions we find an 
expression for the friction force with the side plates. 

F S P gh S P gha a g m a g m≤ + = +⊥γ ρ γ λ ρ( ) ( ).||2 2
              

(3)

Sa = ra2 is the contact area of the particles with the plates. 

Figure 3: The pressure evolution for decreasing injection pressure PI (top 
to bottom) and as a function of time (left to right). High pressure appears 
yellow (brighter) in the snapshots. x- and y-axis units are given in cm.

RESULTS

We ran a set of six simulations for injection pressures of 
PI = (0.5, 1.0, 1.5, 2.0, 2.5, 3.0) × 105 Pa above atmospheric 
pressure P0, a fluid viscosity of µf = 18.0 mPa·s and a friction 
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coefficient with the side plates of cm = 4.0. The injected gas is 
considered as an ideal gas and has the compressibility of air  
bT = 1/P0 at P0. The value of PI at the inlet is reached very 
fast and particles start to move shortly after. During this 
compression of the particles fractures emerge in the granular 
packing. In Fig. 2 a set of snapshots of the particle density is 
shown. The snapshots are taken at increasing time from left 
to right. Each horizontal row of pictures corresponds to one 
of the six simulations at a different injection pressures. In Fig. 
3 snapshots of the corresponding pressure field in the cell are 
displayed. The pressure field is normalized to one to allow a 
qualitative comparison. 

In these plots an apparent feature is the different propagation 
speed and position of the emerging fractures. A high injection 
pressure causes the fractures to propagate faster. To quantify 
this observation we can plot the position of the most advanced 
finger tip as a function in time. This is done in Fig. 4. The plot 
clearly proves the previous observation. Furthermore it turns 
out that the systematic increase of the propagation speed is also 
proportional to the square root of the injection pressure. This is 
checked in Fig. 5. Here the rescaling of the fracture tip position 
by the square root of the injection pressure PI  results in a 
collapse of the graphs. The disagreement at the later stages of 
the simulations in this plot results from the finite size of the 
system, which allows fractures to grow only up to a certain size. 
Finally we can state that the fingers grow according to

Y P f tt I= ( ),                  (4)
where f(t) is a function which appears in the plots to be almost 
linear at early stages of the finger growth for t < 0.01 s. 

Figure 4: The position of the most advanced finger/fracture as a function 
of time at different injection pressure PI. The higher the injection 
pressure PI the further fingers grow.

In Fig. 2 we also observe that the fingers at high injection 
pressure propagate further into the packing before complete 
compaction of the grains takes place. This can be also seen 
in Fig. 4 where the finger position stops growing at longer 
distances from the inlet the higher the injection pressure is.

Apart from the finger position, the increase of the injection 
pressure also affects the shape of the fingers. In Fig. 2 it can 
be seen that the fingers get more branched and fracture-like 

at higher injection pressure. At low injection pressure fingers 
appear to be straighter while increasing the injection pressure, 
fingers develop more and more branches. At the highest 
injection pressure of PI =3.0 × 105 Pa the fingers clearly show 
characteristics of fractures.

Figure 5: The position of the most advanced finger/fracture rescaled by 
the square root of the injection pressure PI . As a function of time the 
graphs at different injection pressure PI collapse onto a single graph.

At high injection pressure PI the pressure gradients are the 
largest. When the boundary is deformed the expected changes 
of the pressure gradients are therefore also higher at high 
injection pressure than at low injection pressure. At low PI, one 
expects a lower pressure gradient everywhere, and thus a low 
effect of seepage forces and a slower deformation. Leading to 
overall smoother pressure gradients and a more stable front 
deformation. We thus expect faster finger propagation, and 
more branching at a higher injection pressure. 

Figure 6: The average of the spatial finger wavenumber in x direction.

Finally also the spatial distance between the fingers depends on 
the injection pressure (see Fig. 6). At low injection pressure the 
number of fingers is higher than at high injection pressure, as 
can be also seen in Fig. 2. In general the finger spatial frequency 
decreases in time after injection has started and fingers 
propagate through the cell. This can be shown by calculating 
the average of the characteristic spatial finger wavenumber in x 
direction. First the power spectrum Sj of each horizontal line j 
of the particle density is calculated. Taking the average of these 
power spectra results in a single power spectrum S . From this 


