average distribution of wave numbers the characteristic wave number $\langle k \rangle$ in the *x*-direction is defined and calculated in the following way, using an average of *k* with the power spectrum as a weight

$$\langle k \rangle = \frac{\sum_{k} kS(k)}{\sum_{k} \overline{S}(k)}.$$
(5)

The results in Fig. 6 show a decrease of finger frequency in time. As a trend we notice that at higher injection pressure the finger frequency decreases faster than at low injection pressure. However the simulation at $P_1 = 250 \ kPa$ differs from the other simulations. In this simulation we also observe a finger propagating directly along the right boundary in Fig. 2. Close to the wall this finger appears to propagate faster than the other fingers in this simulation. Because the simulation at $P_{I} = 250 \ kPa$ is the only simulation where this appears it also stands out in the plots for the average wave number Fig. 6. This is presumably due to a finite size effect, and such outlier is frequently met in granular systems, which are known to present a large variability and sensitivity on details of the initial state. (see e.g. [17]). Otherwise for higher injection pressure, the finger frequency not only decreases faster but also drops to a lower value before the grains get compacted.

This coarsening of the finger frequency is the result of two mechanisms. First the pressure gradient between the finger tip and the outlet gets higher the closer the finger tip moves to the outlet. Assuming a linear pressure profile though the porous media the pressure would drop to zero on a shorter and shorter distance the closer the finger advances to the outlet. At the same time the gas also leaks into the side walls of the finger. This increases the pressure in the porous material around a finger. In the areas where this pressure increase takes place less advanced neighboring fingers would thus experience a lower pressure gradient. The speed of these fingers is thus reduced. This means the more a finger advances to the outlet the faster it moves. At the same time the pressure increase in the area around an advanced finger decreases the pressure gradient in front of less advanced fingers. This causes the less advanced fingers to propagate slower or to stop completely. This mechanism will result in a coarsening of the finger frequency. Further more we expect this mechanism to be active on a typical length scale which is comparable to the skin depth of the pressure profile. In the limit of a infinite pressure skin depth this mechanism is similar to the basic Saffman Taylor instability [23].

A second mechanism that will account for a coarsening of the finger frequency is the compaction of the grains on the sides of a finger. During the propagation the finger width increases and branches at a 90 degree angle arise on the sides of fingers. This compacts the granular material on the sides of an advancing finger. How far this compaction propagates on the sides depends on the properties of the granular material and also on the finger width and how the side branches develop. Where this compaction has occurred preceding fingers are slowed down or stopped. The size of the compaction front around the finger sets a second length scale for the coarsening of the

finger frequency.

CONCLUSIONS

The increase of the injection pressure primarily causes fingers to propagate faster through the granular packing. Fingers at high injection pressure also tend to be more branched and fracture-like than the fingers at low injection pressure. It was shown that the position of the fracture propagation in time increases with the square root of the injection pressure $\sqrt{P_I}$. Furthermore we discussed the observed coarsening of the characteristic spatial finger wavenumbers in terms of two mechanisms. A first mechanism that controls the coarsening arises from the fluid seepage into the granular media. Where the length scaled for this mechanism was argued to be of the size of the pressure skin depth. To further explain the coarsening a second mechanism causing the coarsening of the finger wavenumber was highlighted. This second mechanism introduces a length scale for the coarsening with the size of the compaction front in the granular material around a finger.

ACKNOWLEDGMENTS

We thank Gustavo Sánchez-Colina for help in the Spanish grammar.

[2] F. C. Boait, N. J. White, M. J. Bickle, R. A Chadwick, J. A. Neufeld and H. E. Huppert, J. Geophys. Res. B: Solid Earth **117**, B03309 (2012).

[3] E. Lemaire, Y. O. M. Abdelhaye, J. Larue, R. Benoit, P. Levitz and H. Van Damme, Fractals 1, 968 (1993).

[4] X. Cheng, L. Xu, A. Patterson, H. M. Jaeger and S. R. Nagel, Nat. Phys. **4**, 234 (2008).

[5] H. Huang, F. Zhang, P. Callahan and J. Ayoub, Phys. Rev. Lett. **108**, 258001 (2012).

[6] Ø. Johnsen, R. Toussaint, K. J. Måløy and E. G. Flekkøy, Phys. Rev. E **74**, 011301 (2006).

[7] Ø. Johnsen, C. Chevalier, A. Lindner, R. Toussaint, E. Clément, K. J. Måløy, E. G. Flekkøy and J. Schmittbuhl, Phys. Rev. E **78**, 051302 (2008).

[8] Ø. Johnsen, R. Toussaint, K. J. Måløy, E. G. Flekkøy and J. Schmittbuhl, Phys. Rev. E **77**, 011301 (2008).

[9] A. Nermoen, C. Raufaste, S. D. de Villiers, E. Jettestuen, P. Meakin and D. K. Dysthe. Phys. Rev. E **81**, 061305 (2010).

[10] M. J. Niebling, R. Toussaint, E. G. Flekkøy and K. J. Måløy, Phys. Rev. E (submitted).

[11] M. J. Niebling, E. G. Flekkøy, K. J. Måløy and R. Toussaint, Phys. Rev. E **82**, 011301 (2010).

[12] M. J. Niebling, E. G. Flekkøy, K. J. Måløy and R. Toussaint, Phys. Rev. E **82**, 051302 (2010).

[13] J. L. Vinningland, R. Toussaint, M. J. Niebling,

REVISTA CUBANA DE FÍSICA, Vol. 29, No 1E, 2012

^[1] M. Bickle, A. Chadwick, H. E. Huppert, M. Hallworth and S. Lyle, Earth Planet. Sci. Lett. **255**, 164 (2007).

E. G. Flekkøy and K. J. Måløy, European Phys. J. Special Topics **204**, 27 (2012)

[14] S. McNamara, E. G. Flekkøy and K. J. Måløy, Phys. Rev. E **61**, 4054 (2000).

[15] J. L. Vinningland, Ø. Johnsen, E. G. Flekkøy, R. Toussaint and K. J. Måløy, Phys. Rev. Lett. **99**, 048001 (2007).

- [16] J. L. Vinningland, Ø. Johnsen, E. G. Flekkøy, R. Toussaint and K. J. Måløy, Phys. Rev. E **76**, 051306 (2007).
- [17] J. L. Vinningland, E. G. Flekkøy, R. Toussaint and K. J. Måløy, Phys. Rev. E **81**, 041308 (2010).
- [18] M. A. van der Hoef, M. van Sint Annaland and

J. A. M. Kuipers, Chem. Eng. Sci. 59, 5157 (2004).

[19] N. G. Deen, M. van Sint Annaland, M. A. van der Hoef and J. A. M. Kuipers, Chem. Eng. Sci. **62**, 28 (2007).

- [20] N. G. Deen, M. van Sint Annaland, M. A. van der Hoef
- and J. A. M. Kuipers, Prog. Comput. Fluid Dyn. 7, 152 (2007). [21] M. A. van der Hoef, M. van Sint Annaland, N. G. Deen
- and J. A. M. Kuipers, Ann. Rev. Fluid Mech. 40, 47 (2008).
- [22] C. Zeilstra, J. G. Collignon, M. A. van der Hoef and J. A. M. Kuipers, Powder Tech. **184**, 166 (2008).
- [23] P. G. Saffman, G. Taylor, Proc. R. Soc. Lond. A **245**, 312 (1958).

REGISTERED PARTICIPANTS AT March *COM*eeting'12

Argentina (3)		E. Fort	ESPCI
M. A. Aguirre	UBA	J. Ch. Géminard	University of Lyon
I. Ippolito	UBA	M. Hoyos	ESPCI
G. Miño	ESPCI (temporary)	O. Ramos	University of Lyon
Brazil (2)		B. SaintYves	CEA-Saclay
M. N. Moura	UFPE	S. Santucci	ENS-Lyon/CAS
G. L. Vasconcelos	UFPE	P. Tabeling	ESPCI
Colombia (1)		R. Toussaint	IPGS/CAS
A. Castro	ESPCI (temporary)	L. Tuckerman	ESPCI
Cuba (25)		Mexico (2)	
E. Altshuler [†]	University of Havana/CAS	C. Ruiz-Suárez	CINVESTAV-Monterrey
A. J. Batista-Leyva [†]	Instec	J. L. Arauz-Lara	University of San Luis Potosí
A. Batista	University of Havana	Norway (17)	
A. Borroto	University of Havana	J. Bergli	University of Oslo
B. Concepción [†]	University of Havana	R. Castberg	University of Oslo
L. Cruz	University of Havana	J. A. Eriksen	University of Oslo
O. Díaz	Institute of Meteorology	E. G. Flekkøy	University of Oslo/CAS
R. Díaz-Méndez	CUJAE	J. O. Fossum [†]	NTNU/ĆAS
E. Dominguez	University of Havana	G. Helgesen	IFE/University of Oslo/CAS
N. Figueroa	University of Havana	H. Hemmen	NTNU
K. García	CIM	T. H. Johansen [†]	University of Oslo/CAS
A. González	University of Havana	K. D. Knudsen	IFE/CAS
C. González-Raña†	University of Havana	H. Mauroy	IFE
A. Hernández	University of Havana	K. J. Måløy [†]	University of Oslo/CAS
A. Lage	University of Havana	M. J. Niebling	University of Oslo
A. Lam	University of Havana	S. Raaen	NTNU
K. León	CIM	Z. Rozynek	NTNU
E. Martínez	University of Havana	B. Sandnes	NTNU
J. M. Nieto-Villar	University of Havana	J. I. Vestgården	University of Oslo
L. del Río	University of Havana	V. V. Yurchenko	University of Oslo
A. Rivera	University of Havana	Spain (1)	·
G. Sánchez	University of Havana	J. Iñiguez	University of Salamanca
O. Sotolongo [†]	University of Havana	UK (2)	·
F. Tejera	University of Havana	D. Barkley	University of Warwick
H. Torres	University of Havana	I. Guillamón	University of Bristol
Denmark (2)		USA (8)	·
M. H. Jensen	Niels Bohr Institute	R. Behringer	Duke University
J. Mathiesen	Niels Bohr Institute	D. Durian	University of Pennsylvania
France (15)		H. Jaeger	University of Chicago
S. Atis	FAST	L. P. Kadanoff	University of Chicago
E. Bouchaud [†]	ESPCI	R. Pynn	Indiana University/CAS
E. Clément	ESPCI	G. Reiter	University of Houston
H. Van Damme	ESPCI	T. Shinbrot	Rutgers University
O. Dauchot	ESPCI	S. Waitukaitis	University of Chicago
P. Dommersnes	University of Paris-Diderot/CAS		

† Members of the Organizing Committee.

Poster session. (Photo: O. Ramos)
