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We use linear response theory in order to compute the light 
absorption spectrum, in the terahertz band, of a polariton 
system composed by excitons in a quantum dot very strongly 
coupled to the lowest photon mode of a thin micropillar. In a 
thermalized (Bose condensed) system at low temperatures, 
the spectral function shows a peak associated to a 1s-2p like 
exciton transition, enhanced by polariton effects. On the other 
hand, in a non-equilibrium system absorption is peaked at low 
energies. Thus, a measurement of terahertz absorption could 
give an indication of the degree of thermalization in the polariton 
system. 

La teoría de respuesta lineal es utilizada para calcular el 
espectro de absorción, en la banda de terahertz, de un sistema 
polaritónico compuesto por excitones en un punto cuántico 
fuertemente acoplados al modo fotónico fundamental confinado 
en un micropilar. En un sistema termalizado (condensado 
de Bose) la función espectral muestra un pico, asociado a la 
transición excitónica 1s-2p, reforzada por efectos polaritónicos. 
Por el contrario, en un sistema no equilibrado el pico de 
absorción se localiza a bajas energías. Luego, la medición de la 
absorción de terahertz podría indicar el grado de termalización 
de los polaritones.

PACS: Polaritons, 71.36.+c; Absorption spectra of excitons, 71.35.Cc; Electron states and collective excitations in quantum dots, 73.21.La

The strong coupling regime in the interaction between 
a confined photon mode and electron-hole pairs in 
semiconductor nanodevices has been demonstrated recently 
[1]. The quasiparticles, so called polaritons [2,3], which are 
roughly half excitons and half photons, offer very interesting 
possibilities, such as, for example, a new lasing mechanism 
(polariton lasing) based on their quasibosonic nature [4], with 
pumping threshold (related to ground-state occupation) two 
orders of magnitude lower than ordinary (photon) lasing in the 
same devices [5], and operation at ambient temperatures [6].

In the present paper, we focus on the linear response of a model 
polariton system to terahertz radiation. The first motivation to 
carry on such a study is the intuitive idea that the interaction 
with the confined photon mode reinforces coherence of the 
excitonic subsystem and, thus, may reinforce the collective 
response of the excitons to the terahertz probe. This may result 
in a semiconductor version of the Giant Dipole Resonances 
(GDR), a phenomenon widely studied in nuclei [7] and 
electron clusters [8], with the possibility of controlling the 
position and intensity of the resonance by varying parameters 
such as the pumping rate or the photon-exciton detuning.
 
The second good reason to study terahertz absortion by excitonic 
polaritons is that it has proven to be very useful in order to 
observe exciton formation dynamics in quantum wells [9], and 
bulk systems [10]. In the polariton system, a few years ago the 
common belief was that a thermalized Bose-condensed state is 
reached [11,12]. Very recently, however, this conclusion along 

with the interpretation of most experiments is being questioned 
[13]. We think, the available experimental techniques should be 
able to measure the degree of thermalization of the polariton 
system, not only under stationary conditions [11], but in the 
pumped regime as well [12]. Indicators following from interband 
emission alone are not enough because the main qualitative 
features (population of the lowest polariton state, behavior of 
the second order coherence function, etc) can be reproduced 
also from dynamical equations, without any thermalization 
mechanisms, both in the pumped [14] and in the stationary 
regimes [15].

Below, we compute terahertz absorption in two extreme 
situations. One is a Bose condensed state at very low 
temperatures, in such a way that only the many-particle 
ground state has a significant occupation probability. In our 
model, with not very realistic parameters, the 1s-2p excitonic 
transition is located at around 10 meV, that is the temperature 
should be lower than 100 K, a common experimental situation. 
The spectral function shows a GDR-like peak, whose position 
grows with the polariton number, Fig. 1 (a).
 
The second case corresponds to a polariton system in a non-
equilibrium stationary state (result of a balance between 
pumping and losses), with occupation probabilities that can 
not be described by a Gibbs distribution. The terahertz spectral 
function gets a completely different shape, with a central peak 
at near zero energy which practically does not depend on the 
pumping rate, Fig. 1 (b).
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Figure 1. Comparison between the equilibrium and non-equilibrium 
terahertz absorption. (a) Ground-state spectral function, Eq. (1), for 
various Npol numbers. At a given Npol, the GDR is the highest peak. 
(b) Non-equilibrium spectral function, Eq. (12), for pumping rates (in 
ps) corresponding to mean polariton number in the interval (1,10). The 
detuning parameter is D = -3 meV.

Intermediate, real experimental, situations would interpolate 
between the two extremes, and a measurement of the response 
in real systems would indicate their degree of thermalization.

Calculations are carried on in a model for the quantum dot-
microcavity system, detailed described in Ref. [15], with very 
strong light-matter coupling constant (3 meV), which leads to 
a significant blueshift of the GDR resonance with respect to the 
1s-2p like exciton transition. The main qualitative conclusions 
of the paper are expected to be valid also for any relatively large 
quantum dot or thin quantum well micropillar working under 
the strong coupling regime.
 
Ground-state response of non-interacting polaritons. 
In order to get a preliminary estimate of the absorption 
spectrum, we first consider the ground-state response of non-
interacting polaritons. We assume the system is in a Bose-
condensed state, with Npol polaritons occupying a single state. 
Intraband absorption is described by the dipole operator acting 
only on the exciton functions. The absorption probability 
is then proportional to |a d10|

2Npol, where a is the Hopfield 
coefficient [2] (that is, the weight of the exciton in the polariton 
function), and d10 is the intra-band dipole matrix element 
between ground-state exciton and an excited-state function. 
The latter is supposed to concentrate the oscillator strength 
for dipole transitions. Notice that the absorption probability 
increases with the number of polaritons in the ground state. 
The peak position, on the other hand, should be almost 

constant, roughly equal to the energy difference between the 
exciton ground- and excited states.

Finite, but low, temperatures, should lead to similar results. 
In a grand canonical description, on the other hand, which is 
more natural for the polariton system, sectors with polariton 
number near the mean value will contribute also to the spectral 
function with relatively high weights. The effects of polariton-
polariton interactions is considered in the next paragraph.

Ground-state response of interacting polaritons. Polariton-
polariton interactions come from residual Coulomb 
interactions between excitons. Instead of using a pheno-
menological approach, we start from a model in which 
Coulomb interactions are treated exactly, and the fermionic 
degrees of freedom are explicit. There is a finite number (10) of 
single-particle states for electron and holes, and a single photon 
mode. Saturation effects due to Fermi statistics are seen when 
the polariton number is around (or greater than) 10. A detailed 
description can be found elsewhere [15].

Figure 2. Intensity (that is, dipole matrix elements squared) and position 
of the GDR peak for two different values of the detuning, D. Each dot 
corresponds to a given Npol.

The very-low temperature (ground-state) response of the 
Npol-polariton system is contained in the spectral function

S I d J
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where matrix elements, GI|d|JH, of the intraband dipole operator, 
d r ri i

h
i
e∼ � �Σ ( )( ) ( )− (where r h( ) and r e( )  are, respectively, the 

hole and electron position vectors) shall be computed. |JH is the 
ground state function of the Npol-polariton system, and |IH are 
excited states. C0 = 0.1 meV/ is a phenomenological damping 
parameter, and ~IJ = (EI - EJ)/ the transition frequencies.

In our model, wave functions are constructed as linear 
combinations

| | , , ,, ,
, ,

P C S S nS S n
S S n

e he h
e h

〉 = 〉∑
                

(2)

where Se and Sh are Slater determinants for electrons and holes, 
with electron and hole numbers Ne and Nh, respectively, and 
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n is the number of photons in the confined mode. Functions 
entering the combination preserve the polariton number
Npol = Ne + n = Nh + n               (3)

and the total (envelope) angular momentum projection along 
the cavity axis (we assume a circular section)

L l l
i

i
e

i
h= +∑ ( ).( ) ( )

              

 (4)

In Eq. (4), the index i labels the particles. li
(e), for example, 

corresponds to the angular momentum projection along the 
cavity axis of the i-th electron. The ground-state function, |JH, 
has L = 0, whereas |IH are L = 1 functions.

We show in Fig. 1 (a) the spectral function for different 
polariton numbers and detuning D = -3 meV. In the model, 
the parameter D measures the photon energy with respect 
to the nominal band gap, not the photon-exciton detuning. 
 D = -3 meV approximately corresponds to resonant conditions.

The GDRs can be identified as the dominant peaks in these 
curves. The peak position monotonously increases with 
increasing polariton number. This can be understood on 
intuitive grounds. The mass of the electron (or hole) cloud is 
m ~ Npairs, and the Hooke coefficient for the force acting between 
clouds is k ~ Npairs

2. Then, the excitation energy of the dipole 
mode is ω ~ / ~ ~ .k m N Npairs pol  The maximum 
intensity, on the other hand, has a non-trivial dependence on 
Npol, a kind of saturation effect is observed. The intensity first 
increases, as in the non-interacting case, but then, after reaching 
a maximum value, decays. These dependences are illustrated 
in Fig. 2, where the case D = +3 meV, corresponding to an 
enhanced excitonic component of polaritons, is also shown. 
In this positive detuning situation, the absorption probability 
rises because the Hopfield parameter a increases.

In spite of the fact that calculations are performed in a particular 
model, we expect that the statement about the existence of a 
peak in the absorption spectrum at relatively high excitation 
energies (of the order of the exciton 1s-2p transition), whose 
intensity increases at least for polariton numbers well below 
saturation values, is general enough, and could be used as a 
criterium of a low-temperature system in equilibrium (Bose-
condensed) stae.

Dynamical response of the non-equilibrium system (with 
non-resonant pumping and photon losses).  Below, we 
assume that relaxation mechanisms are not effective, and can 
not lead the polariton system to an equilibrium (thermal) 
state. The system is, thus, described by a density matrix, which 
is obtained from a master equation that takes care of photon 
losses through the cavity mirrors and incoherent (non-
resonant) pumping. Details can be found in Ref. [15]. We solve 
the master equation in the stationary (t "3) limit in order to 
obtain the quasiequilibrium distribution, t(3).

The response to the terahertz probe is computed in the 

linear approximation, where the probe does not modify the 
quasiequilibrium distribution. We adopt a computational 
scheme similar to the one used for the photoluminescence 
response [15]. The starting point is the first-order correlation 
function

〈 + 〉 = 〈 〉∑d t d t J d I g
I J

d IJ
 

,

 
,( ) ( ) | | ,τ

              
(5)

written in terms of the auxiliary function
g t t J I t d td IJ, ( , ) (| |)( ) ( ) ,+ = 〈 〉〈 + 〉τ τ

             
(6)

where |JH are Npol-polariton functions with total angular 
momentum L = 0, and the |IH are Npol-polariton functions with 
L = 1. Because of the Quantum Regression Theorem [16], gd,IJ 
satisfies the same equation as the density matrix, that is [15]

d
dτ

ω

κ

κ

g i g

I a M g K a J

d IJ IJ IJ d IJ

K M
d MK

K I

, ,

,
,

 

,

( )

| | | |

= −

+ 〈 〉 〈 〉

− 〈

∑

≠

Γ

2 MM
d KJ

d IM
K M J

I a M M a K g

g M a K K a J

∑

∑

〉〈 〉

− 〈 〉〈 〉
≠

| | | |

| | | |

 
,

,
,

 κ
2

,                      (7)

with boundary conditions at t "3, x = 0

g I d K

I d J

d IJ
K

KJ

JJ

,
( )

( )

| |

| |

= 〈 〉

≈ 〈 〉

∑ ∞

∞

ρ

ρ
,               (8)

where, in the last step, we used the fact that t(3)
KJ is 

approximately diagonal in the energy representation [14].

In Eq. (7), l is the loss rate, 0.1 ps-1 in our model. The widths, 
CIJ, are computed from

Γ IJ
K

up up

K a I K a J

P N I N J

= 〈 〉 + 〈 〉

+ +

∑κ
2

2

2 2{| | | | | | | | }

{ ( ) ( )}
,              (9)

where P is the pumping rate, and Nup(I) is the number of states 
with polariton number Npol(I) + 1 used to solve the equations.

The general solution of the linear system, Eq. (7), is written 
in terms of the eigenvalues, mn, and eigenvectors, X(n)

IJ, of the 
matrix BIJ,MK defined by the r.h.s. of Eq. (7), that is

g C Xd IJ n
n

n IJ
n

,
( )( ) exp( ) ,τ λ τ= ∑

            
(10)

where the coefficients Cn are determined from the boundary 
conditions, Eq. (8).

The Fourier transform of Eq. (5) defines the response spectral 
function to the terahertz probe in the quasi-equilibrium system

S
D D

ne
IJ n
r

n
r

IJ n
i

n
i

n
r

n
i( )
( )

( ) (
,

( ) ( )
,

( ) ( )

( ) ( )ω
π

λ λ ω
λ λ ω

= −
+ −
+ −

1
2 ))

,
,

2
nI J

∑∑           
(11)
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where D J d I C XIJ n n IJ
n

,
 ( )| | ,= 〈 〉  and superscripts (r), (i) refer 

to the real and imaginary parts of the magnitudes, respectively.

A simplified and more intuitive expression comes from the 
diagonal terms of Eq. (7) [15]. Notice that, for excitation 
energies ~ > 1 meV, the diagonal is at least 10 times higher 
than the off-diagonal elements (because l = 0.1 ps-1 ). Neglecting 
the off-diagonal terms, we get:

S I d J
ne

JJ IJ

IJ IJI J
( ) | | | |

( )
.

( )

,
ω

π
ρ

ω ω
≈ 〈 〉

+ −

∞

∑1 2

2 2

Γ
Γ             

(12)
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Figure 3. The lowest Npol = 2 states with L = 0 and L = 1 in the model. 
A big number of near zero-energy dipole transitions are possible in the 
Npol = 2 sector. We draw in the same figure, shifted by the nominal Egap, 
the Npol = 1, L = 0 states. Notice that L = 0 bands with different Npol 
numbers are almost parallel.

As compared with S0, the non-equilibrium spectral function 
includes also contributions from the excited states, |JH, which 
may have relatively high occupation probabilities, t(3)

JJ, as 
can be seen, for example, in Fig. 6 of Ref. [15]. On the other 
hand, the dipole matrix elements for transitions originated in 
excited states could be much stronger than ground-state dipole 
elements. This statement follows from the energy-weighted 
sum rule for dipole transitions [17, 18]:

∆
I

IJE I d J C∑ 〈 〉 =�| | | | ,2

            
(13)

where constant C does not depend on the indices J.

The sum in Eq. (13) reduces to a single term when the 
oscillator strength from state |JH is concentrated on a single 
state, |IH. Then, if there were excited states |JH for which the 
dominant transitions have DEIJ ~ 0.1 meV, for example, their 
contribution to Sne would be 100 times stronger than the 
ground state contribution. This is, indeed, what one sees in 
the spectral function, Fig. 1 (b). An extra factor of around 
20 comes from the number of excited states. We have drawn 
in this picture the non-equilibrium spectral function for 
pumping rates, P, corresponding approximately to the same 
situations depicted in Fig. 1 (a). That is, the mean polariton 
number ( ( ))( )〈 〉 = ∞N N Jpol J JJ polΣ ρ  for P = 0.01 ps-1, for 
example, is around 4, etc. In Fig. 3, we show that near zero-
energy dipole transitions are very common in our model, and 

should be very common also in micropillars with embeebed 
quantum wells because of the exciton near flat band.

In conclusion, we expect the absorption spectral function 
for a non-equilibrium polariton system to be peaked at near 
zero energies, in clear contrast with the Bose-condensed 
system, whose spectral function is peaked at the GDR. The 
dependence on Npol is also very different. In the thermalized 
system absorption increases with increasing polariton number, 
whereas in the nonequilibrium system it decreases as the 
pumping rate increases. Thus, terahertz absorption could 
be a sharp criterium allowing to discriminate between the 
thermalized and the non-equilibrium scenarios. 
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