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Dispersion and migration of bacteria under flow in confined 
structures is related to a large spectrum of practical interests, 
and lacks a fully satisfactory understanding. We introduce a 
simple bidimensional continuous model trying to describe 
the main characteristics of the movement of E. coli along 
a microchannel. Their convective transport, lateral wall 
absorption/desorption processes and migration along lateral 
walls are taken into account. The model reproduces the 
anomalous dispersion of bacteria when passing through a 
constriction. 

Los fenómenos de migración de bacterias en flujos en 
geometrías confinadas se encuentran involucrados en una 
gran variedad de aplicaciones prácticas, pero sobre ellas no 
se ha establecido un entendimiento satisfactorio. Nosotros 
presentamos un modelo bidimensional simple para describir 
los rasgos fundamentales del movimiento de bacterias E. coli 
en microcanales. Tenemos en cuenta el transporte convectivo 
de estas, los procesos de adherencia y desprendimiento de 
las paredes laterales, así como la migración a lo largo de 
las mismas. El modelo reproduce la dispersión anómala de 
las bacterias al atravesar secciones estrechas, observada 
experimentalmente.

PACS: Swimming of bacteria, 47.63.Gd; Biological fluid dynamics, 43.63.-b, 87.85.gf; Convection, 47.55.P-.  

INTRODUCTION

We still lack a basic knowledge on the microscopic mechanisms 
controlling bacterial transport under flow conditions. A 
complete understanding of the mechanisms behind bacterial 
behavior in confined media such as porous or fractured 
materials would allow to theoretically asses the problems of 
decontamination or pollution of ground water supplies, bio-
contamination, contaminations of biological micro-vessels or 
nosocomial infections through the use of catheters or other 
medical devices.

Along those lines, the fundamental question of hydrodynamic 
dispersion of bacteria suspended in a fluid, remains an issue 
that has not received yet a fully satisfactory treatment, due to 
the autonomous character of the bacterial motion, and their 
basically different behavior in open spaces and confined 
geometries [2-5].

Here we explain some of the characteristic features of the 
bacterial motion, by means of a bidimensional model that 
comprises the main features of the movement of Escherichia 
coli along a microchannel. We offer an explanation of 
recent experimental results obtained by Altshuler et al. in 

[1] where a bacterial densification past a funnel is found in 
microflows.

BACKGROUND

The E. coli bacterium is a 2 µm body-length swimmer that has 
two to six 10 µm length flagella, i.e, long thin helical filaments, 
each driven at its base by a reversible rotary motor. When 
rotating synchronized and counterclockwise, flagella form a 
bundle that propels the cell forward for a while, this is named “a 
run”. During a run, the flagellar rotation is counterbalanced by 
cell clockwise body rotation [6]. The propulsive force of flagella 
competes with the drag viscous force, keeping the bacterium 
moving at an almost constant speed until it “tumbles” [7]. 

During a tumble, one or more filaments change their rotation 
direction for a short time, enough to make the bundle fly apart 
and change the bacterium’s swimming direction. Then, flagella 
resynchronize and another run begins [8]. In this way, bacteria 
execute random walks, while alternating sequences of runs for 
long times (around 1 second [7]), and tumbles for relatively 
short time intervals during bacterium reorientations.

Another remarkable feature of the behavior of these cells is their 
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interaction with the near walls. When swimming in confined 
environments, E. coli are attracted by surfaces, showing a strong 
increase of the cell concentration at the boundaries [2][3]. 
While swimming very close to the boundary surface, the 
rotating cell body and flagellar filament each experience a net 
lateral drag force near the glass surface and bacteria describe 
curved trajectories [4].

Recently, it has been experimentally reported the densification 
of bacteria concentration in an aqueous solution that passes 
through a constriction in a microchannel [1]. Bacteria 
concentrate, -in a counter-intuitive way- once they have crossed 
the narrower part of the microchannel’s cross section (Fig. 1). 
This concentration enhancement persists over long distances 
from the double-funnel. The symmetry breaking increases 
with the flux, up to a threshold value of stream velocity. Then, 
for larger fluxes this concentration difference decreases to zero, 
and no longer exists.

Figure 1. Cartoon representing the phenomenon reported in [1]. Bacteria 
concentration (represented by gray rectangles) increases when passing 
the double-funnel, and takes a long distance to return to its previous 
state.

Along the microchannel, bacteria reach the lateral walls, move 
parallel to them in a preferentially upstream way, and eventually 
desorb to the center of the channel. This phenomenon was 
previously reported in [5]. In [1] the net bacterial flux from the 
lateral walls was measured along the channel. The profile shows 
an abrupt positive peak in the funnel section, and a persistent 
negative value where the concentration enhancement takes 
place past the funnel, i.e., bacteria desorb to the center in the 
funnel and mostly attach to the walls past the narrow region. 
Out of this zone, the lateral adsorption-desorption process 
equilibrates.

The problem is then mapped onto a one-dimensional advection-
diffusion equation taken at steady state, where the absorption-
desorption exchange with the lateral walls is taken into account 
in a sink-source term experimentally measured. The result fits 
well with the experimental curve of concentration. However, a 
theoretical approach to this lateral interchange and its further 
implications is still lacking.

Our model tries to capture the relation between bacteria in 
the center part of the channel and those swimming along the 
lateral walls.

THE MODEL

The cornerstone of the mechanisms producing the 
concentration profiles observed in E. coli is the capacity of 

bacteria of swimming near the lateral walls in a mostly counter-
stream way. We take into account the convective bacteria 
movement in the center part of the channel, their attachment 
to and runs along the lateral walls, and finally their desorption 
to the central part of the microchannel, where the cycle begins 
again.

When studying bacteria’s dynamics, we shall assume that 
all bacteria moving in the center part swim next to the 
microchannel’s bottom or top [3] (Fig. 2 ), and that the ones 
traveling near the lateral walls swim in a one-dimensional 
way along them. Their concentrations will be the surface 
concentration n(x) for the bacteria of the center part, and the 
linear concentration m(x) for the ones swimming near the two 
lateral walls together. Their velocity in the quiet liquid will be 
v, and we shall denote V(x) the mean fluid velocity in the thin 
stripes where bacteria move next to the top and bottom of the 
microchannel. The microfluidic device itself is 2y(x) wide, and 
its depth is H = const. 

Figure 2. Cartoon representing a lateral view of the microchannel. 
Bacteria concentrate in thin gaps of depth e next to the top and bottom 
of the microchannel. The mean fluid velocity in these narrow regions -not 
in the whole channel- is V(x).

Since we are considering bidimensional bacterial movements, 
our velocity V(x) can be taken as the average in stripes of 
thickness e next to the bottom and top boundaries, where 
bacteria are supposed to swim preferentially. Here e is the 
mean diameter of a bacterium’s body. Considering that along 
the z direction the velocity has a parabolic profile, and that a 
flux Q is being injected, we can say that 

3

(3 2 )( ) .
2 ( )

Qe H eV x
y x H

−
=

                                 
(1)

The problem of diffusion of particles in a liquid that flows can 
be described through an advection-diffusion equation. Since 
our channel is narrow and shallow, we will only consider 
diffusion along the microchannels’ axial direction, i.e., the 
x axis. Bacteria arriving to the lateral walls, which abandon 
the main stream, will be counted as a sink term, and those 
that desorb from the wall and enter the central part will be 
considered in a source term.

To count the number of bacteria arriving to the lateral walls 
per unit time and length, let us suppose that in absence of flux 
the four directions are equiprobable. In this way, half the total 
of bacteria swim transversal to the fluid direction, and so the 
bacteria flux abandoning the central part will be ( )

2
vn x . For 

bacteria that swim along the lateral walls, the desorption flux 
will be Pdm(x)m(x), where Pdm(x) is the probability per unit 
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time for a lateral bacterium to abandon the surface.

Let us write the equation for the concentration of bacteria that 
swim in the center part of the microchannel, at the steady state. 
A more detailed deduction of it, derived from the equation of 
conservation of the chemical species, is shown in the Appendix.

2

2

( ) ( )( ) ( )[ ( ) ( )] .
4 ( ) 2 ( )

dmP x m xd n x d vn xD V x n x
dx dx y x y x

− + = − +
          

(2)

This is an equation for the conservation of the number of 
bacteria. The first term in the left takes account for the diffusion, 
and the second one is the responsible for the bacteria transport 
due to the liquid motion. 

A typical bacterium in a fluid at rest swims in a given direction 
or in a smooth curve for a time τrun , then tumbles and redefines 
sharply its direction in a short time, and then swims again for 
approximately the same time of run. This cannot be said for a 
bacterium swimming along the edge where two perpendicular 
walls intersect. In that case, not every tumble is able to change the 
bacterium’s trajectory, but only the “effective” tumbles do. Since 
experiments suggest that there is an hydrodynamic force attracting 
bacteria to the edge in this situation, we propose that there exists 
a characteristic time for its spontaneous desorption τwall  , that is 
larger than τrun . Their ratio τrun/τwall will be the probability pe for a 
given tumble to be able to separate the bacterium from the wall. 
In this way, the probability for a given bacterium to spontaneously 
abandon the lateral wall in the interval dt is 

1.e e
wall run

dt dtp p
τ τ

= ≤
                 

(3)

The dimensionless number τrun/τwall will be the first free 
parameter in our model.

In our system, bacteria can also be extracted by the effect 
of the shear stress of the fluid stream, which varies with the 
position along the microchannel. Let us suppose that lateral 
bacteria abandon the walls due to effective tumbles or due to 
the effect of the stream, and that these two mechanisms are 
independent and do not occur at the same time. Assuming 
that the probability for a bacterium to be extracted by the flow 
is proportional to the fluid velocity at the given position, the 
probability per unit time of a bacterium swimming along the 
lateral wall to be desorbed into the mainstream, will be 

( )( ) ,e
dm

run c

p V xP x
lτ

= +
                    

(4)

where lc is a characteristic length to be determined –the second 
free parameter of our model. 

Until now, we have only considered the dependence of the 
fluid velocity with the coordinate x, and not its dependence 
with the transversal coordinate y. We have said that the fluid 
velocity V(x) is 0 just by the lateral walls, and constant for every 
other position in y for all coordinates along the microchannel. 
Even when this is a good approximation near the center of the 

channel, it cannot be said for the velocity near the lateral walls, 
where the fluid velocity takes continuous values between 0 
and V(x) within a short length in the y direction. This velocity 
gradient in the y direction extends for lengths comparable 
with bacterial sizes. This, in addition to the effects of bacterial 
rotation, causes their deviation when crossing through those 
regions. The bacteria that go from the center to the lateral walls 
seem to “flip” and swim against the stream along the lateral 
walls, unless they enter the gradient region with less than a 
certain angle γ (γ ≤ π/2), pointing to the stream direction. Then, 
the fraction of lateral bacteria that swim in the direction of the 
fluid will be γ/π, and the rest (π - γ)/π will swim backwards. This 
parameter γ depends on v and V(x), but we will consider it as a 
constant in the first approximation. So the minimal absorption 
angle, γ' = γ/π, will be the third free parameter of our model.

Besides the main flux transporting bacteria along the 
microchannel, next to the lateral walls there exists a current of 
bacteria going to the direction of the fluid, and another current 
that swims counter-stream. If we assume that the velocity of the 
main stream does not affect the bacteria velocities in any direction, 
we can write two different equations for the concentrations of 
bacteria that move forward (mf) and backwards (mb), both take 
the form of advection equations with velocities in opposite 
directions with the same magnitude v. In the stationary state: 

( ) ( ) ( )
2

f
dm f

dm x vn xv P m x
dx

γ ′= −
                   

(5)

( ) ( )[1 ] ( ).
2

b
dm b

dm x vn xv P m x
dx

γ ′− = − −
                  

(6)

To write the equation for bacteria moving forwards, we have 
assumed that a fraction γ' of all the arriving bacteria incorporate 
to the mf current. The other (1 - γ') are supposed to increase the 
backwards concentration mb in the source term in equation (6). 
The desorption probability per unit time for the two species 
mf and mb are taken as identical, since recent unpublished 
experimental data does not show an important difference.

We will assume that the concentration of bacteria moving 
forwards next to the lateral walls represents a fraction γ' of 
the total lateral concentration (m). Thus, equations (5) and (6) 
result in 

( ) ( )[1 2 ] ( ).
2 dm

dm x vn xv P m x
dx

γ ′− − = −
                   

(7)

So far, we have found the system of coupled differential equations 
(2) and (7). For the values V(x) = 3.5 µm/s and  D = 130 µm2/s 
reported in [1], and considering that a typical length in which 
the concentration varies significantly is approximately 2.5 mm, 
we can calculate the Peclet number, defined as ( )V x l

DPe ∆= . 
This gives the ratio between advection and diffusion, and for 
the given values, 80 1Pe ≈  . Consequently, we can neglect 
the diffusion term in (2) and then write: 

2 ( ) ( ) ( )( )
2 [1 2 ]

dmP x m x vn xdm x
dx v γ

−
=

′−               
(8)
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( ) ( )( ) 1 ( ) ( ),
2 ( ) ( ) 4 ( ) ( ) ( )

dmP x m xdn x v dV x n x
dx V x y x V x y x V x dx

 
= − + 

   
(9)

or in matrix form: 
( ) ( ) ( )

,
( ) ( ) ( ) ( )

m x a x b m x
n x c x d x n x
′ −    

=    ′ −                             
(10)

where 

( ) 1( )
[1 2

   
] 2[1 2 ]

dmP xa x b
v γ γ

= =
′ ′− −              

(11)

( )
( )

2 ( ) ( )
dmP xc x

V x y x
=

                 
(12)

1 ( )( ) .
4 ( ) ( ) ( )

v dV xd x
V x y x V x dx

= +
                

(13)

Very far from boundaries and inhomogeneities of the 
microchannel, in a straight section, the dependence of the 
coefficients a, c and d on the coordinate x will vanish. In those 
equilibrium positions xe, the spatial derivatives are m'(xe) = 
n'(xe) = 0, and the concentrations are related according to 

,
2 ( )e e

dm e

vm n
P x

=
                  

(14)

where me = m(xe) and ne = n(xe).

Let us analyze the central matrix in equation (10) in these 
conditions, i.e., the Jacobian matrix of the system. Its 
determinant is Δ = 0, which means that there are no isolated 
fixed points in our system, i.e., infinite values of n(xe) are 
possible and all of them will give its respective values of m(xe) 
according to equation (14). The equilibrium concentrations for 
a given experiment will depend on the boundary conditions on 
the microchannels’ ends. This relation between the linear and 
surface density makes sense while the concentrations are not 
large enough for the inter-bacterial interactions to be relevant.

If the trace Tr of the matrix is negative, the fixed points will be 
stable, otherwise, the concentrations will grow without limits. 
Of course, the unlimited growth does not have a physical 
meaning, since the physical space has a limited capacity, and for 
high concentrations bacteria sizes must be taken into account. 
The condition of a negative trace becomes then: 

2[1 2 ]( ) .
4 ( ) ( )dm e
vP x
V x y x

γ ′−
<

                 
(15)

When condition (15) is satisfied, any deviation from the 
equilibrium concentrations me and ne is reduced to zero. In the 
opposite case, the model is no longer valid.

RESULTS

Bacteria conservation: net upstream motion?  In the 
stationary state, neither accumulation nor depopulation of 
bacteria occurs in any part of the microchannel. The net 
bacteria current through the cross-section must be constant for 

every position x along it. If this were not true, concentrations 
would change in time and we were not in presence of a true 
stationary state.

We shall define I as the net bacteria current in the longitudinal 
direction of the microchannel, 

[ ]( )2 ( ) 2 ( ) ( ) ( ) 1 2 ( ).dn xI y x D V x y x n x vm x
dx

γ ′= − + − −
    

(16)

This is also true in the straight and far equilibrium regions, 
where the spatial derivatives m'(xe) = n'(xe) = 0, ( ) 0dV x

dx =  and 
relation (14) holds. In those points 

22 ( ) ( ) [1 2 ]( ) .
( ) 4 ( ) ( )

e
dm e

dm e

V x y x n vI P x
P x V x y x

γ ′ −
= − 

                 
(17)

In this equation, parenthesis in the right hand side is negative 
in the range of parameters where the fixed points are stable and 
relation (15) holds. This means that the net bacteria current is 
negative, i.e., it is opposite to the direction of the fluid velocity. 
In other words: the number of bacteria per unit time traveling 
along the lateral walls is bigger than that corresponding to 
bacteria swimming far from the lateral walls, in the direction 
of the liquid flow.

It can be seen from equation (17) that if y is decreased at a 
constant fluid velocity, I will become more negative, since a 
larger percent of bacteria will reach the lateral walls and then 
will travel backwards. In the same way, a wider microchannel 
will allow a larger number of bacteria to move a longer time 
with the main stream, without attaching to the lateral walls. 
For very large y, the influence of the lateral walls will vanish, 
and bacteria will move with a drift velocity equal to the fluid 
velocity.

It is worth saying that the case I < 0 cannot be trivially expected 
in an actual microfluidic cell. Notice that this channel is shallow, 
but not strictly 2D: unavoidably, there is always a fraction of 
bacteria describing three-dimensional trajectories.

Comparison with experiments.  To compare the model with 
the experimental data reported in [1], we have numerically 
solved equations (8) and (9) in a microchannel with a funnel-
like constriction in its middle, similar to the one in [1] (Fig. 3). 
Its left lateral wall is given by the equation 

100 if 100

( ) 60 40cos if 100 100.
100

100 if 100

x
xy x x

x

π
< −

  = − − ≤ ≤  
 

 >        

(18)

The right wall is symmetric to the left one, and the channel is 
H =18 µm deep. 

The experimental data reported in [1] is a curve for the bulk 
bacteria concentration along the longitudinal axis of the 
microchannel, for a given fluid velocity. We shall assume that 
instead of a bulk distribution there is a 2D distribution located 
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at the top and bottom surfaces, that we match to n(x).

Figure 3:  Top view of the modeled microchannel.

This experimental data was superposed to the numerical 
solution of our two-dimensional model in Fig. 4. The left 
boundary condition we chose (corresponding to the suspension 
inlet in the experiment) was a constant concentration similar to 
the experimental one (n). In the right part of the microchannel 
we did not assume any particular boundary condition, as if 
the microchannel was long enough for the right outlet not to 
influence the dynamics. 
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Figure 4. Superposition of the numerical solution of the differential 
equations (8) and (9) (continuous line), with the experimental 
concentration far from lateral walls (points). The used parameters were 
Q = 80000 µm3/s; H = 18 µm; v = 20 µm/s; e = 1 µm; pe = 1/13; 
lc = 63 µm and γ’ = 0.2. The equations were solved using, as boundary 
conditions in the left end, the measured equilibrium concentration for ne 
and the value me calculated according to (14). 

The used parameter Q guarantees a fluid velocity, in the narrow 
stripes where bacteria swim next to the bottom and top of the 
microchannel, similar to the bacteria’s advection velocity in 
[1]. The value of the parameter γ' was estimated from recent 
non-published experiments. Our two free parameters, pe and 
lc, were chosen to fit the experimental curve.

The experimental result shows a constant concentration in the 
left straight part of the microchannel (Fig. 4). Then an abrupt 
increase of bacteria concentration takes place in the narrow 
zone, and a slow return to the equilibrium takes place to its 
right. We stress the fact that this return to the equilibrium is 
“faster” than experiment, but still long-ranged (it takes over 
1 mm to stabilize). Notice the existence of a negative peak in the 
experimental concentration just before the constriction. This 
decrease is not reproduced by our model, probably because of 
the lack of the diffusive term.

We have also calculated n(x) for different velocities of the 
suspension (Fig. 5). Within the flux range under study, the 
difference in concentrations between left and right of the 
funnel increases with Q, in agreement with the experimental 
results reported in [1].
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Figure 5.  Results of the model using the same parameters H; v; e; pe 
and lc of Figure 4, but at different fluxes. For the three different curves: 

A (Q = 104 µm3/s, γ’ = 0.45), B (Q = 5 ×104 µm3/s, γ’ = 0.29) and 

C (Q = 5 ×104 µm3/s, γ’ = 0.18). The symmetry breaking increases with 
the flux Q.

When the velocity of the fluid is increased so that relation 
(15) is violated, the model is no longer valid. We expect in real 
experiments a concentration saturation when the lateral walls 
reach their “maximal capacity”. Our theoretical model does 
not contain this restriction yet, but we are looking forward to 
improving it.

CONCLUSIONS

We have modeled the steady state flow of a bacterial suspension 
along a 2D microfluidic channel with a constriction, where the 
concentration of bacteria is kept constant at the left end of the 
channel. Bacteria can be absorbed by or desorbed from the 
lateral walls.

The model contains three “free” parameters: pe, lc and γ', and 
it successfully reproduces the main qualitative experimental 
features of the bacteria concentration in a microchannel 
with a double-funnel constriction, like the concentration 
enhancement past the constriction, and the increase of the 
symmetry breaking when the flux is increased at low fluxes. At 
higher fluxes, the model is not valid.

The model also predicts that the net flow of bacteria along the 
channel (i.e., including flows far and near the lateral walls) 
can be negative –i.e. against the imposed suspension flow. 
Experimentally, we believe that this may be observed in quasi-
2D channels, for very low fluid velocities.
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APPENDIX: DERIVATION OF THE EQUATION FOR 
BACTERIA TRANSPORT IN THE CENTER OF THE 
CHANNEL

Let us start from the equation of continuity for a mixture [9]: 

( ) 2( , ) ( , )· ( , ) ( , ) ( , )dn x y V x y n x y D n x y S x y
dt

+ ∇ = ∇ +


      
(19)

The term S(x,y) is the sink/sorce term, taking into account the 
bacteria absorbing to, and desorbing from the lateral walls. In 
the steady state, the temporal derivative vanishes.

For the advective term we have: 

( ) ( , ) ( , )( , )· ( , ) .x y
n x y n x yV x y n x y V V

x y
∂ ∂

∇ = +
∂ ∂



            
(20)

If we take the mean over the width of the channel, using the 
condition of no-slip in the lateral walls, we have, for the second 
term of the right hand side of equation (20) 

( )

( )

( )

( )

1 ( , )( , )
2 ( )

( , )1 ( , ) .
2 ( )

y x

y
y x

y x
y

y x

n x yV x y dy
y x y

V x y
n x y dy

y x y

−

−

′∂′ ′ =
∂

′∂
′ ′−

∂

∫

∫
           

(21)

From the incompressibility of the liquid, we have

· 0 and ,y yx xV VV VV
x y x y

∂ ∂∂ ∂
∇ = + = = −

∂ ∂ ∂ ∂



            
(22)

then, equation (21) becomes 
( , )( , )( , ) ( , ) ,x

y
yy

V x yn x yV x y n x y
y x

∂∂
=

∂ ∂
            

(23)

where y
  stands for the mean in the y direction.

After the mean over the width of the microchannel, in the 
steady state, equation (19) becomes 

2

2

( , ) ( , )( , )

( , )
( , ) ( , ) .

x
yy

x
y

y

n x y n x yD V x y
x x

V x y n x y S x y
x

∂ ∂
− + +

∂ ∂

∂
+ =

∂
      

(24)

where we have put the term of the second derivative in y into 
the sink/source term.

We will approximate the mean of the product ( , )( , ) n x y
x x y

V x y ∂
∂  

by the product of means ( , )( , ) n x y
x xy y

V x y ∂
∂ , using as an 

argument, the uniformity in the velocity profile along the 
y direction, since our microchannel is 10 times wider than 
deep.

The last term in the left hand side of equation (24) vanishes 
in the straight parts of microchannels. In the zone of the 
constriction of the microchannel of [1], where this term is non-
cero, the bacteria concentration n(x,y) is almost constant along 
the y direction, i.e. independent of y. Then, we will approximate 

( , ) ( , )xV x y
x y

n x y∂
∂  by the product ( , ) ( , )xV x y

x yy
n x y∂

∂ .

Now, we identify the mean of the component of the fluid 
velocity ( , ) ( )x y

V x y V x= , expressed in equation (1). In this 
way, we obtain after the suppression of y in the notation: 

2

2

( ) [ ( ) ( )] ( ).d n x dD V x n x S x
dx dx

− + =
           

(25)

The mean over the width of the channel of the sink/source term 
(S(x)) is modeled then in equation (2).
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