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Modeling complex physical phenomena through computer
simulations has become a useful tool for understanding the
world around us. Even the simplest realistic models base on
the general laws of physics, aimed to solving large systems
of partial differentials or integro-differentials equations, and
represent exceptional numerical problems. One of the
techniques used to address these problems are called Cellular
Automata (CA). In brief, they are simulations based on
simple rules in which the space, time, and the possible states
of the system are discrete [1–3].

Biological systems, especially moving groups of animals,
provide many key examples in collective phenomena that can
be modeled by CA [4–6]. Most of these collective phenomena
show two well defined levels of organization which are the
individual level of the organism and the overall level of a
group. Most experiments reveal the features of the global
level, but determining which individual scale interactions
are involved in creating, for example, self-organized patterns,
represents a tough challenge [7–10].

Ants belong to the group of animals that organize without
centralized control: in fact, they are a paradigm of collective
behavior. Living in society involves both cost and benefit.
For example, they pay the cost related to the high density
of individuals living together in a common space, but they
benefit from the access to the information handled by their
nest-mates [11]. The high density of ants in a foraging trial
results in a decrease in their average velocity and therefore
in a decrease in the flow of food returning to the nest.
This is due among other things, to the large number of
frontal head-encounters that occur between ants moving
to and from the food source. These encounters, on the
other hand, are expected to contribute to the information
exchange between individuals. Since ants are often subjected
to numerous threats during foraging (as could be from a
predator or adverse weather events such as rain [12–14]),
it is reasonable to believe that head-head encounter are
crucial to exchange danger information. In the present work
we investigate, using CA models, the emergent patterns
resulting from different hypothesis of ant-ant exchange of
danger information when foragers are abducted.

Our simulations represent an ant colony foraging for food
though a trail including ants going from the nest to the
foraging area (out-bound ants) and ants returning to the nest
from the foraging area (nest-bound ants). During a given
time interval ants are abducted with a certain probability at a
point in the trail, simulating the presence of a predator. The
non-abducted ants just change the direction of motion and
move towards the nest carrying the information of danger. In
our model, we assume different hypothesis on their ability
to share this information with their nest-mates moving to
the foraging area. To study how the colony responds to
abduction, we analyze what happens to the flow of ants
leaving the nest looking for food. We expected that the
exchange of danger information between ants would result
in a decrease of the number of out-bound ants as a protection
mechanism.

As we have mentioned, CA are discretized models, in which
the continuous space is replaced by an array of cells. In our
case, the size of each cell is such that only an ant can occupy
a cell at each instant of time: it corresponds to 2 cm in reality.
Ants positions, therefore, may only be changed in discrete
steps, that will be integer multiples of the cell size.

Figure 1. Schematic diagram of the CA foraging trail, including the
corresponding dimensions in a realistic experiment. The trail is observed
using two cameras. Out-bound-ants and nest-bound ants are represented
by black squares and red squares, respectively.

Time is also increased in discrete amounts. In our model, the
duration of each step is 1 second. All virtual ants move with
constant velocity equal to 2 cm/s. Therefore, the sequence of
successive states in our CA, is like a sequence of photographs
taken of the entire system.
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Figure 2. Flows of out-bound ants passing by both cameras and waiting times distributions, simulated by CA. (a) and (d) Flows of out-bound ants passing
by both cameras with 15 min of abduction, corresponding to nmaxpα = 0 and nmaxpα = 0.8, respectively. (b) and (e) Flows of out-bound ants passing by
both cameras with 25 min of abduction, corresponding to nmaxpα = 0 and nmaxpα = 0.8, respectively. (c) and (f) Waiting times distributions for simulations
with 25 min of abduction, corresponding to nmaxpα = 0 and nmaxpα = 0.8, respectively.

The total duration of the simulations is approximately 1 hour,
partitioned among before, during and after the kidnapping
of ants. We studied two cases resembling actual experiment
conditions. In the first the flow of ants is 60 ants/min and
individual are kidnapped for 15 minutes (Experiment 1).
In the second case the flow is 30 ants/min and ants are
kidnapped for 25 minutes (Experiment 2). Ants can move
in two directions, toward the food source or back to the
nest as shown in Fig 1. During the time of abduction ants
that reach the danger zone can be randomly removed from
the line with a probability Pab = 0.6. So, for each ant that
reaches the area of abduction, a random number (uniformly
distributed) between 0 and 1 is generated and compared with
the probability of being kidnapped. If:

Random(0, 1) > Pab, (1)

the ant is kidnapped. Otherwise the ant just reverses its
directions of motion and returns to the nest along the top
row shown in Fig. 1. As the returning ants reach the nest,
they move inside it for some extra distance, change direction,
and go out again towards the abduction area (button row in
Fig. 1). Each abducted ant is accumulated along the top row
at the right of the abduction zone, to resemble the laden ants
coming from the foraging area that cannot pass through the
abduction area. When the abduction period ends, the ants
accumulated at the right go back to the nest, thus contributing
to the recovery of the flow.

Each line of the simulation contains 270 cells, equivalent to
a total of 5.4 meters, divided into three parts between the
nest and the area of abduction: over 1.4 m corresponding to
the estimate of the length of ants move from the interior
of the nest to its door (where camera 1 is located); 3 m

corresponding to the distance between camera 1 and camera
2, and 1 m corresponding to the distance between camera
2 and abduction zone (see Fig. 1). Table 1 summarizes
parameters’ value used in the simulations.

Table 1. Parameters used in the simulations.

Parameter Experiment 1 Experiment 2
Abduction time 15 min 25 min
Average ant velocity vh = 2cm/s vh = 2 cm/s
Linear density of ants 0.5 ants/cm 0.25 ants/cm
Total number of ants 600 300
Total trail length 5.4 m 5.4 m

All ants returning from the area of abduction during the
kidnaping’s time, may carry danger information and may
transmit it to the out-bound ants. Since there is no
experimental evidence on danger information exchange
outside the nest, we assume that the ants heading back
to the nest from the abduction area, transmit the danger
information only inside the nest. As consequence, out-bound
ants are induced to perform ”U” turns and move back inside
the nest if enough danger information is received. Let us
assume then that ants share hazard information only within
the 1.40 m inside the nest. The status of each ant can be
represented as follows:

an(i, t + 1)→ F(an(i, t)), (2)
ao(i, t + 1)→ F(ao(i, t), f (n, pα), an(i, t)), (3)

where an(i, t) and ao(i, t) are the states of occupancy of the
position i at time t, by nest-bound and out-bound ants,
respectively (an and ao only take the values 0 or 1). F is
the ”motion function”, that we describe as follows. In (2), if
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position i (in the upper lane of Fig. 1) is not occupied at time
t, the nest-bound ant at the position i + 1 moves into i at time
steps t + 1, but it does not move if the cell i is occupied. In
(3), an analogous rule holds along the lower lane, but there is
an important difference. If an out-bound ant at position i in
the lower lane, coincides with a nest-bound ant in the upper
lane, it will increase its ”danger information” by adding 1 to
the parameter n. This value multiplied by the ”panic factor”
pα represents the ”survival instinct”, and increases as ants
meet her companions who survived abduction. If it satisfied
that,

Random(0.1) < npα, (4)

ant i in the lower lane will try to jump to the upper lane
(equivalent to perform a ”U-turn” and return to the nest).
This process is included in the function f, in (3). But that
is only possible if position i at time t is not occupied in the
upper lane. This is why an(i, t) is present in (3).

The panic factor pα, characterizes the intensity of danger
information communicated by returning ants. By tuning this
factor we can regulate the proportions between the needs to
find food and to protect individuals from danger. At the same
time pα is taken in such a way that 0 ≤ nmaxpα ≤ 1, to avoid
that all ants decide to return after a threshold number of ants
encounters. Here, nmax represents the maximum number of
contacts that an ant may experiences inside the nest.

We first analyze the extreme case in which the ants do not
share information, and therefore never induce U-turns. This
is true for pα = 0.

Fig. 2 (a) and (b), show the values for the flow of
out-bound ants seen by the two cameras spaced 3 meters
apart, corresponding to both kidnapping intervals. We
observe that before the abduction period the system is in
a stationary state. During abduction the ants flow decreases
due to abduction, and afterwards the flow recovers.

These general features are also observed in the case of
nmaxpα = 0.8, see Fig. 2 (d) and (e). The oscillations found
in the flow after abduction period, are due to ”avalanche
effects”: if once an ant is informed of danger and decides to
return, it communicates the information to their nest-mates,
leading to a multiplicative process.

However, we note the following important differences. The
time when the flow begins to decrease once kidnapping
begins (τ f d), decreases with increasing nmaxpα, as shown in
Fig. 3 (a). This suggest that increasing the intensity pα, ants in
the nest learn faster about danger and begin to make U-turns.
In fact, this results in a decrease of the number of ants being
kidnapping in the abduction area, see Fig. 3 (b).

The simulations show that even although the panic factor
is set to the maximum value there is necessary some time
(around three minutes) for the danger information to reach
the nest. Also, the model as proposed in (2) and (3), does not
permit that the colony suppresses completely the flow even
for the maximum panic factor (Fig. 2 (d) and (e)), i.e there will
always be some “kamikaze” scouts willing to forage. This
model gives flexibility to the colony to “prioritize” foraging.

We expect that these two parameters, τ f d and nmaxpα, allow
direct comparison with experimental data.

Another important quantity that characterizes the traffic on
the line of ants is the temporal spacing between ants (or
waiting times). This parameter is defined as the difference
of passage time between an ant (i) and its nearest nest-mate
(i + 1): ∆t = ti+1 − ti and gives us an idea of the ant spatial
distribution along the row, during abduction period. The
distributions of waiting times for the out-bound ants for the
simulations with 25 min of abduction, can be described by a
Poisson process, i.e. by exponential distributions P(t) = e−λt,
as show in Fig 2 (e) and (f). This means that waiting times are
mutually independent: there are no correlations between two
successive waiting times. During the abduction we reduced
the density of ants on the line, so we see longer waiting
times for the out-bound ants in the case of maximum panic
factor, which is reflected as a smaller slope of the distribution
(plotted in a log-linear graph, 2 (e) and (f)). If we increase the
panic factor or the time of abduction, there is a decrease in
the value of the exponent λ, corresponding to longer waiting
times. Fig. 3 (c) shows the decrease of λ as nmaxpα increases.
This is also a fingerprint of the mechanism against danger.

Our model shows that the more information is exchanged
between members of the colony the bigger will be the
response to external stimuli, meaning more protection of
their members. But, at the same time shows that the colony
does not stop foraging.
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Figure 3. Simulation outputs as a function of the panic parameter. (a) Time
delay between the beginning of abduction and start of the flow decrease,
τ f d. (b) Percentage of abducted ants, Nab. (c) Exponent of the distributions
of waiting times during abduction, λ.

The parameters we have used in the simulations have been
estimated for actual experiments under natural conditions.
So, it would be easy to test our hypothesis in real experiments.
Preliminary experimental results (which will be published
elsewhere) suggest that the behavior of foraging ants of
species Atta insularis is best described using the hypothesis
pα = 0. So, surprisingly enough, real ants do not share danger
information in abduction experiment.
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