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We use Levy flights in the mutations space to model the temporal

evolution of bacterial DNA. The model parameters fit the so-called

Long Time Evolution Experiment on E. coli.

Los vuelos de Levy en el espacio de mutaciones son utilizados

para modelar la evolución temporal del ADN en bacterias. Los

parámetros en el modelo se ajustan a las observaciones del

Experimento de Evolución a Largo Plazo con E. coli.

PACS: Levy flights 05.40.Fb; Random Processes 05.40.-a; DNA 87.14.gk

I INTRODUCTION

Living creatures are complex systems that use a huge amount
of information and elaborated control mechanisms. A typical
mammalian cell, for example, synthesizes around 10,000
proteins, which concentrations should remain under very
precise limits. The information for life is encoded in the
DNA molecule.

There are many natural or external factors causing
“damages” to the DNA. During DNA replication, for
example, sometimes there are “errors”. If these damages or
errors are compatible with life, and are not corrected by the
DNA repair mechanisms [1], then they survive in the cellular
descendants after mitosis. In this case, we speak about
mutations. Evolution proceeds precisely through natural
selection among the mutated individuals.

Bacteria are unicellular organisms well suited to study
mutations under controlled conditions. Their circular DNA
molecule contains a few millions bases, 1000 times shorter
than human DNA. On the other hand, the rate of cellular
divisions is such that we can observe a few bacterial
generations in the course of a day. In the experiment
described in Ref. [2], for example, the authors reached the
milestone of 20,000 generations in around 8 years, something
that for humans would require about 400,000 years.

A careful examination of DNA mutations shows that we shall
distinguish between local and non-local events. Single-point
mutations are base replacements at a single point of the DNA
molecule [3]. On the other hand, nonlocal changes involve
rearrangements of a segment of the molecule. If we assume
that there is a variable, X, measuring changes in the DNA,
then a single-point mutation would correspond to a small
variation of X, whereas a non-local change shall be described
as a large variation of X. Chromosomal rearrangements are
typical examples of non-local DNA changes [4].

Modeling mutations requires, naturally, random processes.
The location in the DNA molecule at which the mutation

occurs is random, as it is the “magnitude” of the
mutation. In terms of the X variable, mentioned
above, single-point mutations could be described as a
short-amplitude Brownian motion [5]. But we should add
the possibility of large-amplitude jumps. The combination
of a small-amplitude Brownian motion and large-amplitude
jumps makes a Levy flight [6], a process never used, to the
best of the author’s knowledge, to model mutations.

The purpose of this paper is to present a model, based on
Levy flights, for mutations in bacteria and to adjust the model
parameters in order to qualitatively fit the data presented in
Ref. [2].

II THE LONG TIME EVOLUTION EXPERIMENT

I recall the extremely interesting experiment with E. coli,
conducted by Prof. R. Lenski and his group [2, 7], and
running already for more than 27 years. Among the reported
results, I use the following [8]:

1. In a culture of bacteria, after 20,000 generations, around
3 × 108 single point mutations in the DNA are registered.
These are local modifications of the DNA chain. I notice that
the number of bacteria undergoing continuous evolution is
around 5 × 106.

2. They measure also the frequency of mutations involving
rearrangements in segments of the DNA. In particular,
mutations in which the repair mechanisms are damaged
and the mutation rate increases 100 times. This mutator
phenotype becomes dominant in two out of twelve cultures
(probability 1/6) after 2500 - 3000 generations, in a third
culture (cumulative probability 1/4) after 8,500 generations,
and in a fourth culture (cumulative probability 1/3) after
15,000 generations.
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III THE ACCUMULATIVE CHARACTER OF
MUTATIONS

In this model, the time evolution of cells defines trajectories,
as schematically represented in Fig. 1, where two of these
trajectories are drawn as red lines. The line joins one cell
with its daugther at each step. We are interested only in
continuosly evolving trajectories, that is those who always
pass to the next day of evolution. Notice that the number of
evolution trajectories coincides with the number of cells at
the begining of each day, Ncell.

The idea about trajectories in the evolution of cells means that
there are Markov chains [9] of mutations, where the change
in the DNA of a cell at step i+ 1, xi+1, comes from the change
in the previous step plus an additional modification:

xi+1 = xi + δ (1)

Horizontal DNA transfer is not considered.

Figure 1. Schematic representation of the evolution of bacteria in the
Long Time Evolution Experiment. Every day, the cells experience a clonal
expansion in which the initial number Ncell ≈ 5 × 106 is raised 100 times.
However, only Ncell bacteria pass to the next day. Two evolution trajectories
are marked by red dashed lines.

IV MEASURING CHANGES IN THE DNA

A single strand of E. Coli DNA contains around 4.6 × 106

bases of a four letter alphabet: A, G, C, and T. [10] In order to
measure changes in the DNA, one may use a variable similar
to that one of paper [11].

First, we define an auxiliary variable at site α in the molecule:
uα(G) = 3/8, uα(A) = 1/8, uα(T) = −1/8, and uα(C) = −3/8.
Then, we define a walk along the DNA:

y(β) =

β
∑

α=1

uα. (2)

As a function of β, the variable y draws a profile of the
DNA molecule, and modifications can be measured as:
X(β) = y(β) − y0(β). where y correspond to the mutated
DNA, and y0 – to the initial configuration. Of course, there
are so many X(β), five millions, that they are not of practical

use. The strategy could be to use variables measuring global
changes or distances to the original function:

X =

L
∑

α=1

(u′α − uα), (3)

X(1) =

L
∑

α=1

α(u′α − uα), (4)

where X(2) would be (the second moment), etc. L is the length
of the molecule. The Shannon informational entropy [12]
could also be of use.

In what follows, we shall assume that mutations are well
characterized by a few global variables.

V LEVY MODEL OF MUTATIONS

The δ term in Eq. (1) represents mutations at step i + 1. It
may come from a partially repaired damage in the DNA
that is fixed after replication, or from an error in the
replication process. It should be stressed that both the repair
mechanisms and the replication process guarantee very high
fidelities. The error introduced by the latter, for example, is
around one mistaken base per 109 bases in the human DNA
strand [3].

Figure 2. (Color online) Schematic representation of a single evolution
trajectory in a two-dimensional mutation space. The starting point is X = 0.
In the mutation space, I distinguished regions in which the DNA repair
mechanism is active or damaged.

Let us stress once again that δ is not the damage caused
by endogenous or external factors, but the resulting
modification after the action of the repair mechanisms. It
is known, for example, that ionizing radiation may cause
double strand breaks in the DNA [13]. These damages are
very difficult to repair [3]. The repair mechanism itself may
introduce large changes in the resulting DNA composition
after a double strand break event.

My proposal for δ is the following: δ = δB + δLJ. The
δB component corresponds to a Brownian motion with
maximal amplitude DB. Notice that DB = 1 would mean
roughly a change of basis in each replication step because
uα(G) − uα(C) = 3/4. This Brownian motion introduces local
modifications in the DNA. After Nstep replication steps, the
characteristic dispersion of a trajectory due to this Brownian
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motion (something like the radius of the colored region near

the origin in Fig. 2) is DB

√

Nstep. [5]

The large-jump component of δ, δLJ, on the other hand, is
modeled with the help of rare events with total probability
p << 1, and a probability density proportional to 1/δ2

LJ
, where

the amplitude ranges from DB to infinity (in practice, I will
introduce a cutoff, Dmax). The combination of the Brownian
motion and the large amplitude jumps leads to Levy flights
[6] in the mutation space, schematically represented in Fig.
2.

Notice that the distribution function associated to Levy
flights is a fat- or long-tail one. This fact could be related
to the long range correlations observed in the walks along
the DNA [11].

VI THE LONG TAIL DISTRIBUTION FUNCTION OF
MUTATIONS

Four parameters enter my oversimplified Levy model of
mutations: Ncell, Nstep, DB and p. As mentioned above,
Ncell = 4.6 × 106. On the other hand, Nstep is the number
of replication steps along a trajectory.

DB is the amplitude of the Brownian motion. It shall
be determined from the observed number of single point
mutations (SPM) after 20,000 generations. The number
of SPMs per bacteria is 3 × 108/(4.6 × 106) ≈ 65. The
characteristic dispersion of the trajectory, on his side, is the

Brownian radius,
√

Nstep DB ≈ 140 DB. In order to estimate
the equivalent number of SPM, I divide the latter by the
mean deviation involved in a SPM, that is 5/12. Notice
that u(G) − u(A) = 1/4, u(G) − u(T) = 1/2, etc. Thus,
65 = 140 DB/(5/12), and DB ≈ 0.19.
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Figure 3. (Color online) The average cumulative probability of mutations,
P(|X| > Z), for a single evolution trajectory after 3000 generations. Points
come from the numerical simulations, whereas the red solid line is a 1/Z fit
to the tail. The Brownian radius, DB

√

Nstep, is marked by a dashed line.

Finally, the parameter p is fixed to 1.3 × 10−5. Below, I shall
come back to the way of determining it.

In the simulations, all of the Ncell trajectories start at X = 0.
In any replication step, mutations are given by Eq. (1),

where δ contains both the Brownian and the large-amplitude
components.

The probability distribution function for mutations in a cell,
P(X), is the probability that a cell arrives at the end point with
an amplitude X. For convenience, I compute not P(X), but
the cumulative probability distribution, P(|X| > Z), which is
shown in Fig. 3 for Nstep = 3000.

The Brownian radius,
√

Nstep DB ∼ 10.4, concentrating most
of the points, is apparent in the figure. In addition, the tail
can be fitted by a 1/Z dependence. The coefficient is roughly
NstepDB p.

The data on the mutator phenotype is to be used in order
to fix the slope in the tail. I assume that the repair
mechanisms are related to a coding region in the DNA of
length l. The mechanisms are damaged when this region
suffers modifications greater than a given Xu. The cumulative
probability can be estimated as Ncell P(|X| > Xu). Using the
functional dependence in the tail, I get:

Cum. Prob. ≈ Ncell

NstepDB p

Xu

l

L
= aNcellNstep. (5)

So far, precise values for l and Xu were not available.
Reasonable numbers are l/L ≈ 10−2, Xu/L ≈ 10−3. From
the observed probabilities, I get a ≈ 5.4 × 10−12, as shown in
Fig. 4, from which it follows that p = 1.3 × 10−5.

The asymptotic formula for events in the tail of the
distribution, Eq. (5), is valid no matter how precise are l
and Xunrep.
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Figure 4. (Color online) Cumulative probability of the mutator phenotype in
the Long Time Evolution Experiment. The line is a fit according to Eq. (5).

VII MUTATIONS AND NATURAL SELECTION

Let me stress that in Fig. 4 probabilities are measured in a
set of 12 cultures. Thus, one expects errors of the order of

1/
√

12 ≈ 0.3. In addition, Lenski and his group report not
the occurrence of the mutation, but the moment at which
the phenotype becomes dominant in a population. In this
process, natural selection plays a major role.
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In both the DNA-repaired and DNA-unrepaired regions
of the mutation space, there exist points with evolution
advantage. These points act as attractors in the mutation
space.

Natural selection may be included in my model by
introducing a relative fitness parameter, w. [14] wr = 1 and
wu apply to regions of radius three around the centers of
the DNA-repaired and DNA-unrepaired areas. Out of these
regions, wo = 0.7. I introduce a clonal expansion phase in
which the number of cells increases 100 times, as in the Lenski
experiment, but only Ncell bacteria pass to the next step. The
bacteria are selected according to the conditional probability
w/(wo + wr + wu). Results are to be published elsewhere.

VIII LEVY MODEL OF CANCER

With appropriate parameters, my Levy model can also be
applied to mutations in stem cells and, in particular, to the
analysis of lifetime cancer risk in different tissues [15] with
the help of a formula like Eq. (5). Results are to be published
elsewhere. [16]

I would like to stress only the intriguing fact that in cases,
like the ovarian germinal cell cancer, where physical barriers
act as protection, and the action of the immune system is
partially depressed, the slope a takes values similar to the
number obtained for bacteria.
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