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THE NEWTONIAN MECHANICS OF A VIBROT
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A mechanical model was developed to describe the behaviour of
a device able to transform vibrations into rotations, named Vibrot.
The theoretical model, developed in the newtonian formulation of
mechanics, was able to reproduce qualitatively all the experimental
results existing in the literature and quantitatively some of them.

Se desarrolló un modelo mecánico para describir el
comportamiento de un dispositivo capaz de convertir energı́a
cinética en forma de vibración en energı́a cinética rotacional,
llamado Vibrot. El modelo teórico, desarrollado en la formulación
newtoniana de la mecánica, corroboró cualitativamente todos
los resultados experimentales existentes en la literatura y
cuantitativamente algunos de ellos.

PACS: Newtonian mechanics, 45.20.D-; Dynamics and kinetics of rigid bodies, 45.40.-f; Classical mechanics of continuous media, 83.10Ff

I INTRODUCTION

Devices able to transform rotational energy into kinetic
energy along the rotation axis have been very used for ages.
Archimedes of Syracuse is credited with the invention of
one of these devices, nowadays known as “Archimedes’s
screw”, whose basic working principle is still used [1]. This
kind of phenomenon have been well studied because of
its direct implications in the industry, but what about the
inverse phenomenon? The mysterious rotation of the statue
of Neb-Senu, [2], attracted the attention of several believers
who explained it by formulating fanciful hypothesis.
Nevertheless, the physicist Brian Cox formulated a more
realistic one, where the vibrations produced by the steps of
the visitors induced a rotation on the statue, [2].

In order to unravel the working principle behind this
phenomenon we will focus our attention in a simple
device named Vibrot (vibration to rotation). A complete
experimental description of a Vibrot as the one we aim to
describe theoretically, may be found in [3].

II THE MODEL

A Vibrot as the one designed by Altshuler et al. in [3], is
shown in Fig. 1a. We model a Vibrot as a head resting on
three legs. The head consists in an homogeneous cylinder of
radius R = 15 mm and height h = 12 mm. Each of the legs
is made by a spring of equilibrium length l = 11 mm and
elastic constant = 400 N/m. The upper side of the springs are
attached to the Vibrot’s body at a distance r = 12 mm from
the center of the cylinder’s bottom. A light rod freely slides
inside each spring, and touches the ground through a disk.
The three legs are axially symmetric relative to the bottom
base, and are inclined α = 30o relative to the vertical (see Fig.
1b).

Figure 1. a) Photograph of a Vibrot taken from [3], and b) Sketch of our
model Vibrot.

The vibrations of the platform used in [3], can be introduced
by means of an acrylic surface that vibrates sinusoidally in
the vertical direction (i.e. along the gravity), with a frequency
fv and amplitude A. Our reference system was taken on the
vibrating surface, so it is an accelerated framework. In order
to describe the temporal evolution of the Vibrot we use the
following coordinates:

• z(t): axis perpendicular to the base of the cylinder
passing through its center.

• ϕ(t): rotation angle of any point located in the
cylinder’s base.

We first describe the forces acting along the z-axis. The
gravity force Fg = mg points downwards, where m is the
Vibrot’s mass, and g = 9.8 m/s2 is the acceleration of the
gravity. When the springs are compressed a length ∆l, an
elastic force Fe = 3k∆l cos()(α) is applied upwards. That
happens when the distance between the base of the cylinder
and the ground is smaller than l cos(α). Otherwise the
Vibrot is in its “ying phase” and Fe = 0, while springs
keep their equilibrium length. As a consequence of taking
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an accelerated reference system we also have an inertial
force, Fi = mω2Acos(ωt) = mgΓcos(ωt), where Γ = Aω2/g
is the dimensionless acceleration and ω = 2π fv the angular
velocity.

It is important to take into account, that every time
the Vibrot collides with the platform, part of its kinetic
energy is dissipated as heat and, like there is not previous
models of a Vibrot, we will assume it happens due to a
viscous friction. Strictly, this viscous force regards also
the interaction between the Vibrot and the surrounding
air, but this contribution can be neglected (the change in
the kinetic energy by “air-friction” is much less than by
“platform-friction”), so we assume that the viscous friction
only mimics the collision between the Vibrot and the acrylic
surface. Then, in the z-axis there is also a viscous force
Fv = −bż(t), where the parameter b will be determined from
the experimental data.

If we define the variable ξ(t) = z(t) − lcos(α), the viscous and
elastic forces can be written as

Fv = −bξ̇(t), (1)

Fe = −kξ(t). (2)

As we mentioned before, the elastic force only acts when the
Vibrot is touching the platform (ξ < 0). To introduce this
information we can use the Heaviside function, Θ(x). Then,
the elastic force is Fe = −kξ(t)Θ(−ξ). Henceforth we will
discuss the motion in the z-axis by means of the variable ξ(t).
We will also define ωo = (2π fr) =

√
3k/m where fr is the

rotation frequency. So, the differential equation describing
the vertical motion of the Vibrot is

ξ̈(t) = gΓ cos(ωt) − g − ω2
oξ(t)Θ(−ξ) −

1
m

bξ̇(t). (3)

In order to obtain the equation that describes the rotation
of the Vibrot, we will pay attention to the momentum of
the forces exerted on the cylinder. When the elastic force is
acting, it has a component on the plane of the base of the
cylinder, which has associated an absolute torque, Te, given
by

Te = 3k|∆l| sin(α)r = 3kξ(t) tan(α)r. (4)

Both the torque and the elastic force are only different
from zero when ξ(t) < 0. Furthermore, once the Vibrot
touches the platform, a kinetic friction force begins to act,
but quickly transforms itself into static. Modelling this
force is also complicated, but we propose the following
hypothesis: once the Vibrot collides with the vibrating membrane,
the torque mentioned before changes its sign, and remains this
way until it reaches the minimum, where it comes back to be
positive. Moreover, as the static force cannot move the
device backwards, we will assume the angular velocity to be
non-negative. Also, we include a dynamic friction associated
to the torque, TFr , given by Eq. 5, where was taken as average

normal force the ones in the position of equilibrium of the
springs.

TFr = −µmgr (5)

The friction coefficient was taken as,µ = 0.5, which is the very
close to the materials used. In order to avoid that the legs of
the Vibrot slide backwards, the relation µstatic > tan(α), must
be fulfilled all the time. Note that if the friction coefficient is
null, wherewith the Vibrot could not rotate due to the external
torque vanishes while the angular momentum conserves,
then, the rotation frequency remains with the initial value,
i.e. fr = 0.

The differential equation that describes the temporal
evolution of the rotation angle, ϕ(t), is

ϕ̈(t) = −
2r
R2ω

2
o ξ̇(t) tan(α)Θ(−ξ)Θ(ϕ̇(t))Sig(ϕ̇(t))−

−
2r
R2µgΘ(−ξ)Θ(ϕ̇(t)) (6)

In this equation, Sig(x) represents the sign function, and we
used as the moment of inertia of the Vibrot, I = 1/2mR2

(Moment of inertia of a cylinder). Equations 3 and 6 describe
the temporal evolution of the device. We will solve them
assuming that the Vibrot is at rest at t = 0, so the initial
conditions are:

ϕ(0) = 0, ϕ̇(0) = 0, ξ(0) = −
g
ω2 , ξ̇(0) = 0. (7)

III RESULTS

Solving analytically the system of differential equations 3 and
6 is a little complicated in spite of having the first equation
disengaged. So, we have to solve it numerically. However,
we can reach some analytical results, as follows.

In our model, the Vibrot does not rotate if the legs are
touching the ground. So, if ξ(t) is negative, the Vibrot
will not rotate, and it is possible to determine the threshold
dimensionless acceleration Γth, below which there is no
rotation. In order to do that, the equation 3 is solved for
ξ(t) < 0, resulting the equation of a forced oscillator plus a
constant. Then, if the solution for a long time (t � 1/ fv)
is negative, the Vibrot will not rotate. For long times, the
solution that prevails is:

ξp(t) =
gΓ sin(ωt + ϑ)√

(ω2 − ω2
o)2 + ( b

m )2ω2
−

g
ω2

o
, (8)

where

ϑ = arctan

ω2
o − ω

2

b
mω

 (9)

By imposing ξ(t) = 0 and sin(ωt+ϑ) = 1 in Eq. 8, it is possible
to obtain Γth as:

Γth =

√
(ω2 − ω2

o)2 + ( b
m )2ω2

ω2
o

(10)
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Using in Eq. 10 the expression ωo =
√

3k/m, we obtain
the dependency with the mass of Γth. Figure 2 shows the
experimental result for Γth vs. m, reported in [3] as well as
the one obtained here using Eq. 10.

Figure 2. Comparison of the dependency of the threshold dimensionless
acceleration, Γth , as a function of the Vibrot’s mass, m, for a 50 Hz vibration
frequency, between a) Experimental results [3] and b) Theoretical results.

In Figure 2 we can see the resonance effect in both graphs.
The model’s results are slightly right-shifted in a value on the
order of 3g, a consequence of the choice of the parameters k
and b. Here, it is important to remark the almost perfect
coincidence between the numerical results and the ones
obtained using Eq. 10.

We also obtained an approximation for the fly time, T f ly,
using the following expression:

T f ly =
2ξ̇(tn)

g
, (11)

where tn is the n-th zero of ξ(t), (n � 1). We can see
the fly time as a function of the normalized dimensionless
acceleration (Γ/Γth) in Figure 3. This figure shows that both
graphs have the same behaviour, although we may say that
the model underestimates the fly time.

Figure 3. Comparison of the dependency of the fly time as a function of
the dimensionless acceleration normalized to the threshold dimensionless
acceleration, between a) Experimental results and b) Theoretical results.

Once solved numerically the system of differential equations,
3, 6 with boundary conditions given by 7, it is possible to
obtain the behaviour of further magnitudes, like the rotation
frequency as a function of other parameters. Experimentally,
the rotation frequency is computed as the average value of
the function: ϕ̇(t)/(2π), but inasmuch as this function is not
constant, we calculated the rotation frequency fr as:

fr =
1

2π(t2 − t1)

t2∫
t1

ϕ̇(t)dt =
ϕ(t2) − ϕ(t1)
2π(t2 − t1)

, (12)

where the relations t1 > 0, t2 > 0 and t2 − t1 � 1/ fv, have
to be satisfied. Figure 4 shows a comparison between the
experimental and the model results for the Γ dependence of
the rotation frequency, for a Vibrot with mass m = 4 g and a
vibration frequency of 50 Hz. For the value of Γth = 0.7 the
model accurately predicts the experimental results.

In Figure 5 we can see how the rotation frequency decreases
as the vibration frequency increases, for a Vibrot with mass
m = 4 g and a dimensionless acceleration, Γ = 1.5. Also, it
shows a very good agreement between the experiments and
the model. However, the latter predicts a “smoother” decay
for high vibration frequencies.
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Figure 4. Comparison of the dependency of the rotation frequency as a
function of the dimensionless acceleration, for a 4 g Vibrot under a 50 Hz
vibration frequency, between a) Experimental results and b) Theoretical
results.

Figure 5. Comparison of the dependency of the rotation frequency as
a function of the vibration frequency for a 4 g mass Vibrot under a
dimensionless acceleration Γ = 1.5, between a) Experimental results and
b) Theoretical results.

Our model also allows to obtain the mass-dependency of the
rotation frequency, fr. In Figure 6 we observe a very similar
behaviour for small masses between the experiments and the
model, but for higher masses the decrease of fr is slower for
the model. This may be due to the fact that the rubber legs
of real Vibrots are mechanically deformed for high masses.

It is important to check the model’s results for the case
of a Vibrot with rigid legs (k → ∞). In this particular
case, it was experimentally proven that the device does not
rotate. This was an expected result since it behaves as a
rigid body. With our model, we can corroborate this result,
by giving big values to k (bigger than 106 N/m). As the
elastic constant increases, the rotation frequency decreases,
eventually reaching values very close to zero. This fact
can be explained taking into account that an increasing of k
provokes an increasing in the resistance of the springs to the
external force (vibrating platform), which implies a smaller
amplitude, and bigger velocity and fly time, resulting in a
smaller rotation frequency.

Figure 6. Comparison of the dependency of the rotation frequency as a
function of the mass of the Vibrot, under a vibration frequency, fv = 50 Hz
and dimensionless acceleration, Γ = 1.5, between a) Experimental results
and b) Theoretical results.

IV CONCLUSIONS

We have developed a mechanical model of a Vibrot: a device
that, when put on a vibrating platform, is able to rotate due to
the presence of inclined elastic legs that interacts frictionally
with the vibrating platform. In order to construct the system
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of differential equations of the model, the reference system
was taken on the vibrating platform and the rubbery legs of
the experimental Vibrot [3] was modeled as linear springs
inclined a certain angle relative to the normal of the base of
the cylinder, which represents its body. The loss of energy
mechanism was proposed as a viscous force in the vertical
axis and a kinetic friction force in the angular direction. All
the values to construct the model were taken from [5], except
the coefficient of the viscous force, which was determined
by fitting the experimental data and the friction coefficient,
which was taken from the literature.

In spite of the relative simplicity of our model -entirely based
in Newtonian mechanics- we have been able to reproduce
semi-quantitatively or quantitatively most experimental
observations on the Vibrots reported in [3]. The few
discrepancies with experimental data are only quantitative,
an dare probably due to the fact that we did not model the
mechanical deformations of the shape of the legs (especially
bending) due to the weight of the Vibrot body.
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