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The 2016 Physics Nobel Prize honors a variety of discoveries
related to topological phases and phase transitions. Here we
sketch two exciting facets: the groundbreaking works by John
Kosterlitz and David Thouless on phase transitions of infinite order,
and by Duncan Haldane on the energy gaps in quantum spin
chains. These insights came as surprises in the 1970s and 1980s,
respectively, and they have both initiated new fields of research in
theoretical and experimental physics.

El premio Nobel de Fı́sica 2016 honra una variedad de
descubrimientos relacionados con fases topológicas y transiciones
de fases. Aquı́ tratamos dos de estas interesantes facetas:
los trabajos seminales de John Kosterlitz y David Thouless en
transiciones de fases de orden infinito, y por Duncan Haldane
sobre los “gaps” de energı́a en cadenas cuánticas de espı́n.
Estos hallazgos constituyeron una sorpresa en los 1970s y 1980s,
respectivamente, e iniciaron nuevos campos de investigación en la
fı́sica teórica y experimental.

PACS: General theory of phase transitions, 64.60.Bd; Statistical mechanics of model systems, 64.60.De; General theory of critical region
behavior, 64.60.fd; Equilibrium properties near critical points, critical exponents, 64.60.F-

I CLASSICAL SPIN MODELS

When we hear the word “spin” we usually think of Quantum
Mechanics, where particles are endowed with an internal
degree of freedom, which manifests itself like an angular
momentum. So what does a “classical spin” mean?

It is much simpler: it is just a vector (or multi-scalar) ~e, say
with N components; here we assume them to be real,

~e =


e(1)

·

·

e(N)

 ∈ RN . (1)

Models which deal with such classical spin fields are usually
formulated on a lattice (or grid), such that a spin~ex is attached
to each lattice site x. In solid state physics, ~ex might represent
a collective spin of some crystal cell. If it is composed of
many quantum spins, it appears classical [1].

If the spin directions are fixed on all sites x, we obtain a
configuration, which we denote as [~e ].

In a number of very popular models, the length of each spin
variable is normalized to |~ex| = 1, ∀x. Then the spin field
maps the sites onto a unit sphere in the N-dimensional spin

space, x → SN−1. We are going to refer to this setting, and
(for simplicity) to a lattice of unit spacing, with sites x ∈ Zd

in d dimensions.

To define a model, we still need to specify a Hamilton function
H[~e ] (no operator), which fixes the energy of any possible
spin configuration. Its standard form reads

H[~e ] = J
∑
〈xy〉

(1 − ~ex · ~ey) − ~H ·
∑

x

~ex , (2)

where the symbol 〈xy〉 denotes nearest neighbor sites. J
is a coupling constant, and we see that J > 0 describes a
ferromagnetic behavior: (approximately) parallel spins are
favored, since they minimize the energy.1 ~H is an external
“magnetic field” (in a generalized sense), which may or may
not be included;2 its presence favors spin orientations in the
direction of ~H.

Thus we arrive at a set of highly prominent models in
statistical mechanics, depending on the spin dimension N:

N Vector Space Model
1 ex ∈ {−1,+1} Ising
2 ~e T

x = (cosϕx, sinϕx) XY
3 ~e T

x = (sinθx cosϕx, sinθx sinϕx, cosθx) Heisenberg

1Vice versa, J < 0 describes anti-ferromagnets, which also occur in models (cf. Section 3) and in Nature, e.g. Cr, Mn, Fe2O3 and NiS2.
2In field theory one usually deals with “source fields”, which correspond to a space dependent external field of this kind, i.e. to a term

∑
x
~Hx · ~ex .
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where ϕx, θx ∈ R. These models are discussed in numerous
text books, such as Refs. [1–3].
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Figura 1. Examples for a uniform configuration of minimal energy (top)
and for a non-uniform configuration of higher energy (bottom), in the 2d
XY model.

Although it might seem ridiculously simple, the Ising model is
incredibly successful in describing a whole host of physical
phenomena. The XY model will be addressed in Section 2;
its best application is to model superfluid Helium. The
Heisenberg model captures actual ferromagnets, like iron,
cobalt and nickel. Section 3.1 refers to its 2D version, which
is also a toy model for Quantum Chromodynamics (QCD),
since it shares fundamental properties like asymptotic
freedom, topological sectors, and a dynamically generated
mass gap. The large N limit also attracts attention, since it

leads to simplifications, which enable analytical calculations,
see e.g. Ref. [3].

They are also called non-linear σ-models, or O(N) models,
since — with the Hamilton function (2) at ~H = ~0 — they have
a global O(N) symmetry (or Z(2) symmetry in case of the
Ising model): the energy remains invariant if we perform the
same rotation on all spins, ~ex → Ω~ex, Ω ∈ O(N).3

If the system has temperature T, the probability for a
configuration [~e ] is given by4

p[~e ] =
1
Z

e−H[~e ]/T , with Z =
∑
[~e ]

e−H[~e ]/T = e−F/T . (3)

The partition function Z is obtained by summing (or
integrating) over all possible configurations,5 and F = − 1

T ln Z
is the free energy.

For J > 0 the uniform configurations are most probable, since
they have the minimal energy −VH (where H = |~H|). An
example is shown in Fig. 1 (left), and in the limit T → 0 the
system will take such a uniform configuration. For increasing
T, fluctuating configurations — like the one in Fig. 1 (right)
— gain more importance. They carry higher energy, so the
exponential exp(−H[~e ]/T) suppresses them. On the other
hand, there are many of them, and the combinatorial factor is
relevant too. This is the entropy effect, which also matters for
their impact, and which plays a key role in Section 2.

I.1 n-point functions and phase transitions

What does it mean to have an “impact”? What physical
quantities are affected? In exact analogy to field theory,
the physical terms are expectation values of some products
of spins; if they involve n factors, they are called n-point
functions.

The most important observable is the 2-point function, or
correlation function,

〈~ex · ~ey〉 =
1
Z

∑
[~e ]

~ex · ~ey e−H[~e ]/T . (4)

One often focuses on its “connected part”, which — in most
cases — decays exponentially in the distance |x − y|,

〈~ex ·~ey〉con = 〈~ex ·~ey〉 − 〈~ex〉 · 〈~ey〉 = 〈~ex ·~ey〉 − 〈~e 〉2 ∝ e−|x−y|/ξ . (5)

With the Hamilton function (2) the system is lattice
translation invariant, so the 1-point function 〈~ex〉 does not
depend on the site x, and we can just write 〈~e 〉,

〈~ex〉 =
1
Z

∑
[~e ]

~ex e−H[~e ]/T = 〈~e 〉 . (6)

3The O(4) model is of interest as well, in particular due to the local isomorphy O(4) ∼ SU(2) ⊗ SU(2). The latter is the flavor chiral symmetry of QCD
with two massless flavors. Here the magnetic field corresponds to the small masses of the quark flavors u and d, which break the symmetry down to
O(3) ∼ SU(2).

4We express the temperature in units of the Boltzmann constant kB, which amounts to setting kB = 1 throughout this article.
5In N ≥ 2 the number of configurations is infinite. For the Ising model in a lattice volume V, i.e. with V lattice sites, their number is 2V . Even for a

modest volume, say a 32 × 32 lattice, this is a huge number of O(10308), so straight summation is not feasible, not even with supercomputers. Hence to
compute expectation values (see below) one resorts to importance sampling by means of Monte Carlo simulations. For a text book and a recent introductory
review, see Refs. [4].
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The decay rate of 〈~ex · ~ey〉con is given by the correlation
length ξ, which serves as the scale of the system: any
dimensional quantity is considered “large” or “small” based
on its comparison with (the suitable power of) ξ. Regarding
the energy spectrum, ξ represents the inverse energy gap,
1/ξ = E1 − E0. In quantum field theory, this is just the mass
of the particle, which emerges by the minimal (quantized)
excitations of the field under consideration.

The phase transitions that we are interested in are of order
2 or higher, and they are characterized by the property that
ξ diverges. In a phase diagram, with axes like T and H, this
happens in a critical point,6 in particular at a critical temperature
Tc. The way how ξ diverges in the vicinity of a critical point
defines the critical exponent ν,

lim
T→Tc

ξ ∝ (T − Tc)−ν , (7)

where we assume the same power regardless whether Tc
is approached from above or from below (which usually
holds). There are a number of critical exponents, which
characterize the system close to a critical point; we will see
further examples below.

In the limit ξ → ∞, the spacing between the lattice points
becomes insignificant (it is negligible compared to ξ), so this
is the continuum limit. This is why the vicinity of a critical
point is so much of interest.

Intuitively it is clear that high temperature gives importance
to “wild fluctuations”, which suppress long-distance
correlations, inducing a short ξ. So, does ξ diverge only
in the limit T → 0 ? This is indeed the case for the 1D
Ising model [5]. It does not have an actual transition
(with phases on both sides), and the model is considered
uninteresting. However, the Ising model does have a finite
critical temperature in dimension d = 2 [6] or higher, and the
same applies to N > 1.

The simplest observable is the 1-point function, or condensate,
of eq. (6), which also defines the magnetization M (in some
lattice volume V),

~m[~e ] =
∑

x

~ex , M = |〈~m〉| = V|〈~e 〉| . (8)

M > 0 indicates that the O(N) symmetry is broken. An
external field H > 0 causes an explicit breaking. If we start
with an external field and gradually turn it off, the destiny of
the system depends on the temperature:

• At low T, the system keeps a dominant orientation
in the direction of ~H, at T → 0 it will pick the
corresponding uniform configuration. This is known
as “spontaneous symmetry breaking”, it reduces the
symmetry group to O(N − 1).

• At high T, the system allows for wild fluctuations, and
after turning off ~H it hardly “remembers” its direction.

In this case, the O(N) symmetry is restored, since the
dominant contributions to an expectation value are due
to configurations without such a preferred orientation.

Thus the magnetization M discriminates the scenarios where
the O(N) symmetry is broken (M > 0) or intact (M ' 0).
Therefore it is an order parameter: it is finite (it vanishes)
below (above) the critical temperature Tc (which is also called
“Curie temperature”). The way how it converges to 0, as T
approaches Tc from below, defines another critical exponent
β,

lim
T↗Tc

M ∝ (Tc − T)β . (9)

The follow-up example is the critical exponent γ, which
characterizes the divergence of the magnetic susceptibility
χm, at a temperature T close to Tc,

χm =
1
V

(
〈~m 2
〉 − 〈~m〉2

)
∝ |T − Tc|

−γ . (10)

As in the case of ν, also the exponent γ is usually the same
for T >

∼Tc and for T <
∼Tc.

There are classes of systems, which may look quite different,
but which share the same critical behavior, so we say that they
belong to the same universality class. This means in particular
that the critical exponents coincide within a universality
class. The enormous success of the Ising model is due to
the fact that there are many models — and real systems — in
the same universality class, so the Ising model captures their
behavior next to a continuum limit.

II BEREZINSKII-KOSTERLITZ-THOULESS TRANSITION
IN THE 2D XY MODEL

This section deals with the 2D XY model, which is among the
classical spin models introduced in Section 1. We can imagine
a 2D square lattice, where each site x = (x1, x2), xµ ∈ Z, carries
a “watch hand” ~ex, like an arrow from the origin to some
point on a unit circle. These vectors are parameterizable by
an angle ϕx, ~ex = (cosϕx, sinϕx), as we mentioned before.

We formulate the angular difference between two spins as

∆ϕx,y = (ϕy − ϕx) mod 2π ∈ (−π, π] , (11)

i.e. the modulo operation acts such that it picks the minimal
absolute value.

Now let us consider one plaquette, i.e. one elementary square
of the lattice with corners x, x + 1̂, x + 2̂, x + 1̂ + 2̂, where µ̂ is
a unit vector in µ-direction. For a given configuration, each
plaquette has a vortex number vx,

vx =
1

2π

(
∆ϕx,x+1̂ + ∆ϕx+1̂,x+1̂+2̂ + ∆ϕx+1̂+2̂,x+2̂ + ∆ϕx+2̂,x

)
(12)

∈ {−1, 0,+1}.

If the configuration is smooth (close to uniform) in the range
of this plaquette, we expect vx = 0. In case of sizable
angular differences |∆ϕx,x±µ̂|, however, we might encounter

6Phase transitions of first order are more frequent, and they do not correspond to a critical point, but we won’t discuss them.
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a topological defect: this could be a vortex, which we denote as
V, or an anti-vortex, AV. We assign them vortex number +1
and −1, respectively,

vortex V vx = +1
anti-vortex AV vx = −1.

Examples for a configuration with one V or one AV are shown
in Fig. 2. On the other hand, the configurations in Fig. 1 do
not contain any topological defects.
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Figura 2. Examples for configurations with one vortex V (left), and with one
anti-vortex VA (right), in the 2d XY model.

In numerical studies, we have to deal with a finite lattice
volume V, and we usually implement periodic boundary
conditions in both directions; this provides lattice translation
invariance. Then, the volume represents a torus, and the
total vorticity vanishes,

∑
x vx = 0, due to Stokes’ Theorem.

So, the number of vortices must be equal to the number of
anti-vortices, nV = nAV, and the configurations of Fig. 2 are
actually incompatible with periodic boundaries.

In fact, the global system does not have topological
sectors, since its homotopy group is trivial, Π2(S2) = {0}.
Nevertheless, the local topological defects V and AV are the
crucial degrees of freedom for its phase transition.

II.1 First look

A first look suggests the following picture:

• The presence of many V and AV, i.e. a high vorticity
density

ρ = 〈nV + nAV〉/V = 2〈nV〉/V ,

means that strong fluctuations are powerful, and
they destroy the long-range correlations. Hence the
corresponding smooth configurations are suppressed,
the correlation function 〈~ex · ~ey〉 decays rapidly, as in
relation (5), and we obtain a correlation length ξ of a
few lattice spacings. Due to the interpretation of 1/ξ as
a mass, this is called the massive phase.

• On the other hand, for a low vorticity density, ρ � 1,
long-range correlation dominates. It is not disturbed
significantly by the few V and AV that are floating
around, and we are in the massless phase, where ξ = ∞.
Here the correlation function 〈~ex · ~ey〉 does not decay
exponentially, but only with some negative power of
|x − y|.

If we start from low temperature and increase T gradually,
this gives more importance to “rough” rather than smooth
configurations — they are far from uniform, with strong
fluctuations. This increases the vorticity density ρ, and at
the critical temperature ρ is large enough to mess up the
long-range correlations, so the system enters its massive
phase.

To make this point more explicit, we estimate the energy
that it takes to implement one V or one AV in an otherwise
smooth configuration. We do so in a simplified scheme of
a quasi-continuous plane: close to the transition this can be
justified since ξ (the relevant scale) is much larger than the
lattice spacing. Then the angular field ϕ(x) of the simplest
(rotationally symmetric) V or AV, with its core at x = 0, obeys

|~∇ϕ(x)| =
1
r
, r = |x| , (13)

with opposite gradient directions for a V or an AV, see Fig.
2. In this continuum picture, the vorticity v is given by a curl
integral, anti-clockwise around the core,

v =
1

2π

∮
d~x · ~∇ϕ(x) =

1
2π

2π∫
0

rdϕ
(
±

1
r

)
(14)

= ±1 for
{

a vortex
an anti-vortex.

}
(15)
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Regarding the energy, we note that the Hamilton function
(2) (at ~H = ~0) can be considered as a kinetic term, made of
discrete derivatives,

J
2∑
µ=1

(1 − ~ex · ~ex+µ̂) '
J
2

2∑
µ=1

∆ϕ2
x,x+µ̂ '

J
2
~∇ϕ(x) · ~∇ϕ(x) . (16)

Here we switched from lattice to continuum notation, and
we neglect O(∆ϕ4

x,x+µ̂).

If we insert relations (13) and (16) into the Hamilton
function, we obtain an estimate for the energy requirement
for inserting one V or AV into a smooth “background”,

EV =
J
2

∫
d2x ~∇ϕ(x) · ~∇ϕ(x) ≈ Jπ

L∫
1

dr
1
r

= Jπ ln L . (17)

Note that (despite the continuum notation) L expresses the
system size in lattice units, so it is dimensionless (and taking
its logarithm makes sense). The integral over the plane is a bit
sloppy regarding the shape of the volume; it is approximated
by a circle of radius L, except for a small inner disc with the
radius of one lattice spacing (which we have set to 1). The
latter matches the illustrations in Fig. 2, and such an UV
cutoff is needed to obtain a finite result.

Even this simplified consideration captures relevant
properties. The energy for a single V or VA is considerable:
it is enhanced ∝ ln L, so it takes a high temperature to make
such vortex excitations frequent. In the thermodynamic limit,
L→ ∞, they seem to be excluded, but we will see in Section
2.2 why the topological defects are so important nevertheless.
Vadim L. Berezinskii (1935-80) explored these properties in
1971/2 [7]. He was working in Moscow, where he pioneered
the vortex picture [8].

II.2 Refined picture

The picture of Section 2.1 can be criticized for assuming
either a single V or a single AV in the entire configuration,
although we stressed before that their number must be equal
(with periodic boundaries). So the minimal excitation of
topological defects leads to one V plus one AV, as illustrated
in Fig. 3, and the above calculation has to be revised. In fact,
the result is not Eisolated

V,AV = 2EV = 2πJ ln L, but instead

EV,AV = 2πJ ln rV,AV , (18)

where rV,AV is the distance between the V and AV core. This
can be understood qualitatively: if the V–AV pair is tightly
bound, its long-range impact cancels; at large distance, the
configuration can be practically uniform, as in the absence of
any vortices. If we observe the system with a low resolution
(corresponding to a large ξ), we do not see this pair at all.

Only pulling them far apart leads to “free” V and AV, which
are visible to such an observer. When rV,AV reaches the
magnitude of L, the energy requirement is of the order of
Eisolated

V,AV .

From eq. (18) we see that the trend towards minimal energy
implies an attractive force ∝ 1/rV,AV between the V and AV
cores. In d = 2 this is a Coulomb force, so a few V and AV
spread over the plane can be considered as a Coulomb gas. Its
free energy F consists of the total energy E, plus an entropy
term.

In the period 1972-4, John M. Kosterlitz (born 1942 in
Aberdeen), and David J. Thouless (born 1934 in Bearsden),
both from Scotland, worked on this issue at the University
of Birmingham. They concluded that the driving force of
the transition between the massive and the massless phase
is not exactly the density ρ (referred to in Section 2.1), but
the density of “free vortices and anti-vortices”, i.e. V or AV
without any opposite partner nearby. So the phase transition
is actually driven by the (un)binding of V–AV pairs [9].

Figura 3. Profile of a configuration with a V–AV pair, with zero total vorticity:
the V (AV) core is indicated by a red dot (blue square). Its energy is
estimated in eq. (18).

To make this picture more explicit, we consider the free
energy F, say in a sub-volume which is large enough to
accommodate one free V. It is convenient to call its size L,
and to recycle formula (17). The entropy S is the logarithm
of the multiplicity of such configurations, here this is just the
number of L2 plaquettes where the vortex could be located.
This yields

F = EV − TS = Jπ ln L − T ln L2 = (Jπ − 2T) ln L , (19)

and the phase of the system depends on the question which
of these two terms dominates.

• At low T there are hardly any free V or AV (they are
suppressed when L becomes large), though there might
be some tight V–AV pairs.

• At high T these pairs unbind: due to the dominance of
the second term, a large size L makes it easy to spread
free V and AV all over the system.

In this setting, eq. (19) suggests that the critical temperature,
where the transition happens, amounts to Tc = Jπ/2 [9].
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II.3 Critical behavior

Kosterlitz and Thouless predicted a type of phase transition,
which was unknown before the 1970s. The correlation length
diverges at Tc, as in the well-known phase transitions of
second order (at least for T ↘ Tc), but in contrast to them
no symmetry breaking is involved. The means a step beyond
Landau’s Theory, which successfully describes second order
phase transitions with the concept of spontaneous symmetry
breaking. In low dimensions (D ≤ 2), however, thermal
fluctuations are powerful enough to prevent spontaneous
ordering, like a magnetization M > 0. This has been
explained generally by the Mermin-Wagner Theorem, and
specifically for the 2D O(N) models in Ref. [10]. The
characteristics of the BKT transition were also confirmed
experimentally, in particular in thin films of superfluid 4He
[11] and of superconductors [12].

With respect to the critical exponents, this transition was
discussed comprehensively by Kosterlitz in 1974 [13], by
employing Renormalization Group techniques. He pointed
out that this is a phase transition of infinite order, an essential
phase transition. The correlation length ξ is not described
by a power divergence as in relation (7), but by an essential
singularity,

ξ ∝ exp
( const.
(T − Tc)νe

)
, T >

∼Tc . (20)

Thus one defines a critical exponent νe for the exponential
growth of ξ; Kosterlitz derived its value νe = 1/2.

Since there is no symmetry breaking going on in the BKT
transitions, we cannot address the critical exponent β, and
the susceptibility χm does not follow relation (10) either. The
critical exponents of Section 1.1 all refer to infinite volume,
but in the 2D XY model at V = L × L → ∞, χm diverges
throughout the massless phase. Kosterlitz predicted how it
diverges as a function of L (the scale which is left) [13],

χm ∝ L2−ηe (ln L)−2re , ηe = 1/4 , re = −1/16 . (21)

This prediction is hard to verify numerically: studying
the logarithmic term (and further sub-leading logarithms)
requires huge volumes. The best confirmation with the
standard Hamilton function (2) was given in Ref. [14]. It
is based on simulations up to size L = 2048, and the outcome
is consistent with the predicted exponents ηe and re, though
re comes with a large error bar.

At this point we mention an alternative and entirely different
Hamilton function for the O(N) spin models. Unlike the term
(2), it does not include any (discrete) derivative term, but just
a cutoff δ for the angular difference between any two nearest
neighbor spins,

H[~e ] =

{
0 if |∆ϕx,x+µ̂| < δ ∀x, µ
∞ otherwise. (22)

Such a constraint Hamilton function is topologically invariant,
which means that most small modifications of a configuration
leave the energy exactly invariant. This is highly unusual:

part of the configurations are excluded (those that violate the
constraint), while all others have energy 0. Still, it has the
same symmetries as the standard action, and it belongs to
the same universality class [15–17].

There is no temperature in this formulation, but the constraint
angle δ plays a role, which bears some analogy. In fact, there
is a critical δc, and the system is in its massive (massless)
phase for δ > δc (δ < δc). The correlation length exhibits an
exponential divergence as in relation (20) when δ approaches
its critical value within the massive phase [16],

ξ ∝ exp
( const.
(δ − δc)νe

)
, δ >∼ δc . (23)

This observation singles out the critical constraint angle δc =
1.775(1). Fig. 4 shows this divergence as δ > δc decreases, and
the fit yields νe = 0.503(7), accurately confirming Kosterlitz’
prediction.

 10
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 1000

 1.86  1.88  1.9  1.92  1.94  1.96  1.98  2

ξ

δ

data
fit with δc = 1.775, νe = 0.503

Figura 4. The exponential divergence of the correlation length ξ, as δ
decreases towards δc ' 1.775. A fit to relation (23) confirms Kosterlitz’
prediction for νe.

Regarding the limit within the massless phase, the
divergence of the susceptibility χm is consistent with the
relation (21), and ηe is confirmed to two digits, whereas
the value for re is plagued by large uncertainties [16], as in
Ref. [14].

Another prediction for the BKT transition in the 2D XY model
refers to the helicity modulus. In its dimensionless form, it is
defined as

Υ =
1
T
∂2

∂α2 F|α=0 , (24)

where α is a twist angle in the boundary conditions. The free
energy F is minimal at α = 0 (periodic boundaries), and Υ is
the curvature in this minimum.

The qualitative picture is illustrated in Fig. 5 (left): in the large
volume limit, one expects Υ to perform a jump at Tc. Soon
after the BKT transition had been put forward, the hight of
this jump was predicted as 2/π [18]. Later a small correction
was subtracted to obtain the theoretical value [19]

Υc,theory =
2
π

(
1 − 16e−4π

)
' 0.6365 . (25)
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Regarding the constraint Hamilton function, we can interpret
1
Z exp(−F(α)/T) generally as the probability for a (dynamical)
twist angle α, so the helicity modulus can be studied without
the concept of temperature.

Fig. 5 (right) summarizes simulation results for Υc obtained
with various lattice Hamilton functions. The standard
formulation (2) is very tedious in this regard: even
simulations at L = 2048 yielded Υc = 0.67826(7) [14], which is
far too high. Somewhat more successful was the use of a “step
Hamilton function”, which is also topologically invariant:
when |∆ϕx,x+µ̂| exceeds δ = π/2, the energy contributions of
this pair of neighboring spins jumps from zero to some finite
value, which is varied (instead of varying δ). Here L = 256
led to Υc = 0.6634(6) [20], but it still took faith to accept the
compatibility of the large-L extrapolation with the theoretical
value in eq. (25).

moderate volume

large volume

infinite volume

ϒ

ϒc

TT c

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14

ϒ c

1 / L

standard action
step action

constraint action
ϒc, theory

Figura 5. A qualitative picture of the helicity modulus Υ depending on the
temperature (top), and an overview over numerical results for its helicity
jump at the critical point, Υc (bottom).

This compatibility was finally demonstrated beyond doubt
with the constraint Hamilton function (22). As a function of
δ (replacing T), Υ behaves exactly as depicted in Fig. 5 (left):
a jump is observed around δc, and it becomes more marked
as the volume increases. At δc the value Υc = 0.636(4) was
measured already at L = 64, and larger volumes confirmed
the agreement with eq. (25) [17]. This is one of the clearest
pieces of numerical evidence that the BKT transition does
occur, and that the corresponding quantitative predictions
are valid.

Moreover, the corresponding jump in the superfluid density
of thin films has been observed experimentally [11].
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Figura 6. Maps of typical configurations of the XY model on a 128 × 128
lattice, with the constraint Hamilton function (22) and δ = 1.8, 1.9 and 2.5
(from top to bottom). The presence of a V (AV) is indicated by a red (blue)
plaquette. As long as there are only few V (for δ ≤ 1.9), the effect of V–AV
pair formation is evident.

All this seems nicely consistent, but in some sense it is
puzzling: in Section 2.2 we reviewed the consideration of
energy vs entropy in the vortex picture, which predicts
the BKT transition. This picture is standard, and it has
been brought into further prominence by the Nobel Prize
Committee. However, in the formulation with the constraint
Hamilton function the energy cost for any V or AV is zero,
but still the BKT transition is beautifully observed [16,17]. Is
this a contradiction?
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More to the point, we focus on the question: is the V–AV
(un)binding mechanism still at work, even when free V and
AV do not require any energy, but only the entropy effect is
there?

A first hint is given by Fig. 6, which shows “maps” of the V
and AV found in typical configurations at δ = 1.8, 1.9 and
2.5.

For small δ, when only few V and AV show up, the trend
to a V–AV pair formation is obvious. At δ = 2.5 there are
numerous topological defects, and it cannot be seen by eye
whether or not such a trend persists.

 0
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 0.01

 0.015

 0.02

 1.7  1.8  1.9  2  2.1

ρ r
fr

ee

δ

 r = 1
r = 2
r = 4

Figura 7. Top: The density of “free vortices”, ρfree
r , i.e. of V or AV without

an opposite partner within distance r = 1, 2 or 4. We see an onset at
δ >∼ δc, so ρfree

r is similar to an (inverse) order parameter. Bottom: The mean
distance squared between V–AV pairs, D2, for optimal pairing (black line).
For small nV (few vortices), D2 is much shorter than the corresponding
term for random distributed V and AV (red line). Around nV & 50 (typical
for δ ≈ 1.9) this striking discrepancy fades away. This confirms the V–AV
(un)binding mechanism in the BKT transition.

In any case, Fig. 6 only shows specific configurations, but a
conclusive answer requires a statistical analysis. Fig. 7 (top)
shows the average density ρfree

r of “free V” plus “free AV”,
defined by the property that there is no opposite partner
within distance r, with r = 1, 2 and 4. We see an onset
around δ ' 1.8, and a sharp increase as δ exceeds 1.9. Hence
ρfree

r behaves indeed like an (inverse) “order parameter” for
the BKT transition7 (although, strictly speaking, there is no
ordering).

Fig. 7 (top) shows the mean distance squared between nearby
V and AV cores, d2

V,AV, in configurations with nV vortices (and
nV anti-vortices), at L = 128,

D2 =
1

nV

nV∑
i=1

d2
V,AV,i . (26)

The V and AV pairs are formed such that D2 is minimal.
This is compared to D2 for artificial configurations, where
the same number of V and AV are random distributed over
the volume. For small nV — which corresponds to small δ—
we see a striking difference for the configurations which are
generated by simulating the model. This is clear evidence
for a V–AV pair formation. This effect fades away for larger
δ, when nV increases (δ = 1.9 corresponds to about nV = 50).

Figura 8. Top left: Vadim L’vovich Berezinskii (1935-1980) was born in
Kiev (USSR) and graduated 1959 at Moscow State University. After working
at the Textile Institute and the Research Institute for Heat Instrumentation,
he joined 1977 the Landau Institute of Theoretical Physics in Moscow. Top
right: David James Thouless was born 1934 in Bearsden (Scotland). He
studied at Cambridge University as well, and graduated 1958 at Cornell
University, his Ph.D. advisor was Hans Bethe. He worked in Birmingham
with Rudolf Peierls, and later with John Kosterlitz. In 1980 he became
Professor at the University of Washington in Seattle. Bottom: John Michael
Kosterlitz was born 1942 in Aberdeen (Scotland), studied at Cambridge
University, and graduated 1969 in Oxford. In 1974 he become Lecturer at
Birmingham University, and in 1982 Professor at Brown University in Rhode
Island, USA.

We conclude that the V–AV (un-)binding mechanism is at
work, which confirms once more the elegant picture by
Kosterlitz and Thouless for the BKT phase transition. This

7The finite volume shifts the apparent critical angle somewhat up.
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observation even holds when topological defects do not cost
any energy; then it is a pure entropy effect. Therefore the
standard argument for this picture — outlined in Section 2.2
— should be extended.

III HALDANE CONJECTURE

We now proceed to quantum spin models, leaving behind the
classical spins (albeit they will be back in Section 3.1). Now
the components of a spin vector are Hermitian operators, for
spin 1/2 they can be represented by the Pauli matrices. For
any spin, s = 1/2, 1, 3/3, 2, 5/2 . . . (in natural units, ~ = 1),
we write them as Ŝa

x, where x is still a lattice site. These
components obey the familiar relations

3∑
a=1

Ŝa
x Ŝa

x = s(s + 1) , [Ŝa
x, Ŝ

b
y] = i δxy ε

abc Ŝc
x , (27)

where ε is the Levi-Civita symbol. If we compare these
terms at large s, we see that the commutator is suppressed as
O(s)� O(s2), and the spin appears almost classical.

For arbitrary spin we assemble the Hamilton operator Ĥ, and
write down the partition function

Ĥ = −J
∑
〈xy〉,a

Ŝa
x Ŝa

y , Z = Tr e−Ĥ/T . (28)

It is analogous to the Hamilton function (2) and partition
function (3), now with quantum spins. We recognize a global
SU(2) symmetry; its transformation is performed on each
component Ŝa

x.

In addition, this framework differs from the previous sections
in the following points:

• We focus on spin chains, i.e. dimension D = 1, so now
the sites are located on a line.

• We consider anti-ferromagnets, with J < 0, cf. footnote 1.

• We skip the external magnetic field.

• We drop the additive constant (“cosmological
constant”) of the Hamilton function (2). This change is
irrelevant — what matters are solely energy differences.

For commutative spin components it would be trivial to
write down a ground state of such an anti-ferromagnetic
spin chain: it consists of spins of opposite orientations, in
alternating order (say |s, −s, s, −s, s, −s . . .〉 ) known as a Néel
state. However, this is not an eigenstate of Ĥ. Quantum spins
are far more complicated, and identifying a ground state is a
formidable task, even in d = 1.

The investigation of these systems has a history of almost
100 years. The ongoing interest has been fueled by the fact
that quantum spin chains exist experimentally; we will give
examples below. A breakthrough was achieved by Hans
Bethe in 1931, who constructed the ground state for spin
s = 1/2 [21].

Of course also excited states are of interest, and in particular
the question whether or not there is a finite energy gap
∆s = E1 − E0. We repeat that a finite gap corresponds to
a massive phase, with a correlation length ξ = 1/∆s.

In the 1950s and 1960s such systems were studied mostly
with “spin wave theory”, an approach which was fashion at
that time. It predicts a “quasi long-range order” (without
Nambu-Goldstone bosons), which means a power decay of
the correlation function, i.e. the massless case with ξ = ∞.
This was elaborated mostly in higher dimensions, d ≥ 2,
doubts remained about the spin chain.

For D = 1, the expected zero gap for s = 1/2 was
proved in 1961 by the Lieb-Schultz-Mattis Theorem [22].
This consolidated the paradigm that anti-ferromagnetic
quantum spin chains are always gapless, for any spin s =
1/2, 1, 3/2 . . . .

Therefore it came as a great surprise when F. Duncan M.
Haldane (born 1951 in London) contradicted in 1983 [23, 24].
According to the Haldane Conjecture, the paradigm was
correct only for the half-integer spins, but not for s ∈ N .
He conjectured

s = 1/2, 3/2, 5/2 . . . (half-integer) ∆s = 0 gapless (29)
s = 1, 2, 3 . . . (integer) ∆s > 0 finite gap.

Haldane gave topological arguments, which were considered
as somewhat cryptic, hence they were initially met with
skepticism. We refrain from an attempt to review them, here
we refer to Ref. [25].

The zero gap for all half-integer spins was rigorously proved
three years later [26], extending the Lieb-Schultz-Mattis
Theorem.

The surprising part of this conjecture, which refers to integer
spins, was soon supported by numerical studies for s = 1 [27].
Later the existence of a gap ∆1 > 0 was proved in Ref. [28],
and its value was established to high precision in the early
1990s [29]. A study based on the diagonalization of an
L = 22 spin chain, and a large L extrapolation, obtained
∆1 = 0.41049(2) J [30].

This is in agreement with experimental studies. In particular,
the material Cs Ni Cl3 contains quasi-1d anti-ferromagnetic
s = 1 spin chains. The scattering of polarized neutrons leads
to a multi-peak structure, from which the value ∆1 ' 0.4 J
could be extracted [31]. Similar observations were made
with Ni(C2H8N2)2NO2ClO4 [32], but no gap was found in
materials with s = 1/2 spin chains [33].

For higher s ∈N, it is difficult to observe such a gap: it has a
conjectured extent ∆s ∼ exp(−πs) [34], so it becomes tiny for
increasing s. The case s = 2 is still tractable numerically: a
study up to L = 350 arrived at ∆2 = 0.085(5) J [35].

In summary, the Haldane Conjecture (30) has been proved
rigorously for all half-integer spins, and for s = 1. Numerical
and experimental results for the value of ∆1 agree. For 1 < s ∈ N
we have the conjecture, and specifically for s = 2 also numerical
evidence.
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III.1 Mapping onto the 2D O(3) model

A new perspective occurred by mapping such
anti-ferromagnetic quantum spin chains onto the 2D O(3)
model, or Heisenberg model. This latter emerged as a low
energy effective theory, which was construct by a large-s
expansion, and its validity was conjectured for all s [24, 36],
for a review see Ref. [37].

Thus we are back with a classical spin model of Section 1. We
write its Hamilton function in continuum notation,

1
T
H[~e ] =

∫
d2x

[ 1
2g
∂µ~e · ∂µ~e −

θ
8π

i εµν ~e · (∂µ~e × ∂ν~e )
]

(30)

=
1
T
H0 − iθQ[~e ] .

The 3-component classical spin field ~e(x) has the form that
we wrote down for the Heisenberg model (below eq. (2)).
The term H0 is just a continuum version of the form (2) at
~H = ~0, up to the notation for the coupling constant. At large
spin s, the (approximately classical) spin ~S can be written as
~S ' s~e, still with the convention |~e | = 1, which leads to a
weak coupling g ' T/(Js2).

The important novelty is the θ-term: its integrated form,
Q[~e ], counts how many times the configuration [~e ] covers
the sphere S2 in an oriented manner. Hence it is an integer,
namely the topological charge, or winding number, Q[~e ] ∈ Z.8

Therefore exp(−H/T) is 2π-periodic in θ, so it is sufficient to
consider 0 ≤ θ < 2π.

The Haldane-Affleck map of a anti-ferromagnetic quantum
spin chain onto this model relates the quantum spin s to the
vacuum angle θ as θ = 2πs (within the large s construction)
[24, 36, 37]. Taking into account the 2π-periodicity in θ, this
amounts to the scheme

Haldane Conjecture
s integer θ = 0 gap

s half-integer θ = π gapless

Under this mapping, the Haldane Conjecture takes a new
turn. It is remarkable that the mysterious part flips to the
other side: the gap for the 2D O(3) model without a θ-term
is well established, see e.g. Refs. [38]. On the other hand, it is
hard to verify whether the limitθ = π is indeed gapless. If the
mapping were rigorous, we could conclude that everything
is accomplished, but of course it is another conjecture. Hence
the challenge is to investigate the case θ = π.

Perturbation theory does not help (cf. footnote 8),
so Ian Affleck (born 1952 in Vancouver) suggested a
non-perturbative topological picture [34], along the lines of
our consideration in Section 2. Affleck starts from H0 and
adds an auxiliary potential term ∼ µ2(e(3)(x))2, which pushes
the field ~e into the (e(1), e(2))-plane; in the limit µ2

→∞we are
back with the 2d XY model. We call ϕ the angle within this

preferred plane (as before), and α the (suppressed) angle out
of it.

Let us consider a sub-volume, where the configuration
contains a V or an AV in the preferred plane. Its contribution
to the topological charge Q is given by the vorticity computed
in eq. (14), using assumption (13) and Stokes’ Theorem, but
now normalized by the area of S2,

q =
1

4π

∮
d~x · ~∇ϕ(x) = ±

1
2
. (31)

Local topological defects of this kind, with q = 1/2 and q =
−1/2, are denoted as merons and a anti-merons, respectively.

The energy estimate is similar to eq. (17), in particular
we still obtain the factor ln L/a (we now write explicitly
a “lattice spacing” a). The large L limit only allows for
configurations with total vorticity 0, as before, but it permits
meron–anti-meron pairs (cf. eq. (18)). At the end we have to
remove the auxiliary potential, µ2

→ 0; then the merons and
anti-merons can easily avoid the UV divergence in the core,
by choosing spin directions out of the previously preferred
plane.

Hence we arrive at a picture, which allows for numerous
merons and anti-merons, which diffuse the long-range
order, and the energy gap occurs. In addition to the
meron–anti-meron pairs, there can be an excess of one type by
an even number, such that Q = (nmeron − nanti-meron)/2 ∈
Z. However, the meron–anti-meron pairs are mainly
responsible for the energy gap.

2 π

π

0
0

1st order 2nd order

1/g

θ

weak
coupling

strong
coupling

Figura 9. The expected phase diagram of the 2d O(3) model with a
topological θ-term. At weak coupling, the map from anti-ferromagnetic
quantum spin chains, along with Haldane’s Conjecture, predicts a finite
energy gap at θ = 0, but a gapless second order phase transitions for
θ→ π.

So far this is the picture for θ = 0. If we now include
a vacuum angle θ, we see from eqs. (30), (31) that
this attaches to each region with a meron (anti-meron)
a factor exp(±iθ/2). Therefore any sub-volume with an
meron–anti-meron pair picks up a factor cos(θ/2), and in
particular θ = π “neutralizes” all these pairs: they do not
appear in exp(−H/T), so they cannot diffuse the long-range
order anymore, and the gap vanishes.

8For small variations of the trivial configuration ~e(x) = ~0 we always obtain Q[~e ] = 0, so the θ-term is not visible in the field equations of motion, nor in
perturbation theory (expansion in powers of g). Still, it does affect the actual physics, which is non-perturbative (finite g).
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This picture refers to rather smooth configurations, which
dominate at weak coupling, i.e. at small g. This is the
framework of the effective low energy theory [24,36], and we
also mentioned that the mapping at large s leads to a small
g ∝ 1/s2. For the other extreme, g � 1, Seiberg reported
a cusp in the free energy, which signals a first order phase
transition, at θ = π [39].

Taking these conjectures together, we arrive at the expected
phase diagram shown in Fig. 9. In particular, if we fix a small
(or moderate) g, we should run into a second order phase
transition, and therefore into a continuum limit, for θ→ π.

A subtle study in Ref. [40] made this interesting feature
quantitative. To this end, it related the 2d O(3) model at
θ ≈ π, at low energy, to a model of conformal field theory,
known as the k = 1 Wess-Zumino-Novikov-Witten model
(k is the central charge) [41], see also Ref. [42]. Assuming
both to be in the same universality class (cf. Section 1), the
asymptotic behavior of the mass gap was derived as

ξ−1(θ ≈ π) ∝
|θ − π|2/3

| ln(|θ − π|)|1/2
. (32)

In a finite volume L × L, this translates further into a finite
size scaling of the magnetic susceptibility χm (given in eq.
(10)), and the topological susceptibility χt = (〈Q2

〉 − 〈Q〉2)/V:
they are both predicted to exhibit a dominant scaling ∝ L,
which is characteristic for a second order phase transition;
for a (more abrupt) first order transition one would expect
susceptibilities ∝ L2. The conjectured form, refined by
logarithmic corrections, reads

χm = L
√

ln L gm(L/ξ) , χt =
L
√

ln L
gt(L/ξ) , (33)

where gm and gt are “universal functions” with respect to
variations of L and ξ.

This is an explicit prediction, to be verified in order to
check the above conjecture about a second order phase
transitions for θ → π. The way to study effects beyond
perturbation theory, from first principle, are numerical
Monte Carlo simulations of the lattice regularized model
(we recall footnote 5 and Refs. [4]). Its idea is to generate
numerous random configurations with probability p[~e ] ∝
exp(−H[~e ]/T), cf. eq. (3). A large set of such configurations
enables the numerical measurement of expectation values of
the physical terms.

This is straightforward for H0, but as soon as we include
θ , 0, H and exp(−H/T) become complex, so they do
not define a probability anymore. We could generate the
configurations using | exp(−H[~e ]/T)|, and include a complex
phase a posteriori by re-weighting the statistical entries. This
is correct in principle, but the re-weighting involves lots of
cancellations, hence a reliable measurement requires a huge
statistics — the required number of configurations grows
exponentially with the volume V. This is the notorious sign
problem.

Figura 10. Frederick Duncan Michael Haldane (top), was born 1951 in
London and studied at Cambridge University, where he graduated in 1978.
After working at the University of Southern California, the Bell Laboratories
and the University of California, San Diego, he became Eugene Higgins
Professor at Princeton University in 1990. Ian Keith Affleck (bottom) was
born 1952 in Vancouver, studied at Trent University (in Ontario, Canada),
and graduated 1979 at Harvard University, his Ph.D. advisor was Sidney
Coleman. He worked at Princeton University and Boston University, and
since 2003 he is Killam Professor at the University of British Colombia in
Vancouver.

In most cases where this problem occurs, in particular in QCD
at high baryon density, and also in QCD with a θ-term, it has
prevented reliable numerical results. However, in the case of
the 2D O(3) model, this problem was overcome thanks to the
exceptionally powerful meron cluster algorithm [43], applied
to the constraint Hamilton function (22) at δ = 2π/3.

This algorithm divides the lattice volume into connected
sets of spin variables ~ex, the clusters, which are updated
collectively [44]. This approach provides huge statistics
(including many configurations that do not need to be
generated explicitly). Hence in this exceptional case,
conclusive numerical results were obtained, and they clearly
confirmed the predicted large-L scaling of eq. (33), including
the ln L refinement [43].

In addition, the algorithm also assigns an integer or
half-integer topological charge q to each cluster (they sum up
to the topological charge Q ∈ Z of the entire configuration).
At weak coupling, most clusters are neutral (q = 0), and
a few percent carry charge q = ±1/2 (higher charges are
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very seldom). At this point, we return to Affleck’s picture,
and interpret the clusters with q = 1/2 (−1/2) as merons
(anti-merons). Then the picture of pair neutralization
appears in a new light: now it is stochastic, and it does not
require any O(3) symmetry breaking (unlike the potential
∼ µ2(e(3))2). Hence it confirms the result for the second order
phase transition, and it even endows the heuristic picture
with a neat stochastic interpretation.

IV CONCLUSIONS

We described the concept of classical and quantum spin
models, the framework of the 2016 Physics Nobel Prize.
We addressed aspects related to topology, i.e. to quantities
which are invariant under (most) small deformations,
and which can only change in discrete jumps. We
referred to low dimensions, D = 1 and 2, where thermal
fluctuations prevent the dominance of ordered structures,
and therefore spontaneous symmetry breaking, but smooth
phase transitions happen nevertheless.

In the classical 2D XY model we described the BKT phase
transition [9], which is essential (of infinite order), and
driven by the (un)binding of vortex–anti-vortex pairs. This
transition has been observed experimentally, for instance in
superfluids [11] and in superconductors [12], and recently
also in systems of ultra-cold atoms trapped in optical lattices
[45].

Then, we summarized the history of anti-ferromagnetic
quantum spin chain studies, in particular the Haldane
Conjecture [23, 24] about energy gaps for integer spin vs.
gapless chains for half-integer spin. This insight agrees
with experimental results as well [31, 32]. We further
discussed the mapping onto a classical 2D O(3) model with
a topological θ-term (the Haldane-Affleck map [24, 36]), and
the manifestation of the Haldane Conjecture in that system.

These are only selected topics of the works, which were
awarded with the Physics Nobel Prize 2016. For a review
of aspects which have not been covered here — in particular
the quantum Hall effect and topological insulators — we refer
to Ref. [46].
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