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Motion analysis of animals has been a continued challenge
for scientists. Traditionally, researchers used non automatic
methods to record the animal behaviour [1, 2]. More
recently, computer vision development made this task less
labor-intensive and results became more accurate. Several
tracking algorithms have been employed to capture animal
trajectories.

In the case of insects the tracking process is often affected
by the interaction between them [3]. The work by Maitra
et al., Khan et al. and Veeraraghavan et al. show different
approaches for tracking multiple bees [4–6]. Equivalently
Balch et al., Fletcher et al. and Ying developed other solutions
for tracking multiple ants [7–9]. Other studies limited the
amount of insects to one, but tried to capture a very accurate
trajectory like Baatrup and Bayley using spiders [10] or Reyes
et al. using ants [11]. More recently the work of Decamp
started breaking the limitations imposed by the camera’s field
of view by adding a GPS reference to a mobile sensor [12].

We are interested in studying single individuals in non
confined areas [13]. Our long term goal is to be able to film the
insects with an accurately moving camera. So, if we are able
to determine very precisely the position of the insect referred
to the camera, and then the position of the camera referred
to the land, we will be able to determine the position of the
insect referred to the land accurately, even within relatively
large distances.

In this work we analyze and compare different computer
vision algorithms to detect and track a single insect. Each
algorithm is evaluated taking into account the computing
time and the possibility of working if the camera position
is changed. Algorithms that can successfully carry out the
tracking task when the camera position is changed are tested
using a mobile camera system. Finally we propose a method
for tracking non-flying insects in unconfined regions using
a combination of some of the algorithms presented and a
mobile camera system.

I. TRACKING ALGORITHMS

We benchmark each algorithm using our own
implementations. All the software was written in Python
with OpenCV. Independently of the algorithm, for a better

performance we do not process every full frame. Instead we
analyze a small neighborhood of pixels, centered around the
insect, that gets updated from frame to frame rather than
the whole image itself. This Region of Interest (ROI) is what
our algorithms will be tracking throughout the sequence of
image frames. When the insect moves, the estimated position
will differ from the last and the ROI will be displaced, in such
a way that it is centered in this new position. Studying just
a portion of the image considerably speeds up the tracking
algorithm.

Once the moving insect is detected, its center of mass must be
calculated. This center of mass is given by Equation 1, where
mpq denotes the pqth moment and is calculated by means of
Equation 2, in which I(x, y) is the image value of the pixel xy.
This center of mass is assumed as the estimated position of
the insect.
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In the following sections we provide a brief description of
the tracking algorithms we used.

I.1. Frame Differencing

Motion can be detected by calculating the difference between
two consecutive frames [14]. In our proposed solution the
frames are converted to gray scale and subtracted from
each other, as stated in Equation 3, where Fi(x, y) are the
xy pixels of the ith frame and Di(x, y) the difference. The xy
pixels corresponding to regions in the image that stay static
have no intensity variations and therefore the difference will
be null. On the other hand, those that do experience any
sort of movement will result in values different from zero.
This algorithm excels in static camera systems but has poor
performance in mobile camera systems as the xy pixels in the
image vary in intensity while the camera moves.

Di(x, y) =
∣∣∣∣ 1

2 · Fi(x, y) − 1
2 · Fi−1(x, y)

∣∣∣∣ (3)
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I.2. Background Subtraction

This algorithm starts by modeling a background reference.
The presence of moving insects will be determined by
subtracting the current frame from this model. Variations in
this difference in terms of pixel intensities indicate existence
of motion. The proposed algorithm is the one described
in [15]. It is ideal for a static camera system, where the
background can be perfectly modeled as it is not constantly
changing.

I.3. Optical Flow

This algorithm calculates image optical flow field, as
described in [16], where each element of the field is a vector
containing displacement information of a pixel. The angle of
this vector indicates the moving direction of the pixel and the
magnitude responds to the distance it moved. The region of
pixels in the ROI that have more optical flow are due to the
movement of the insect. A major drawback is that any object
inside the ROI bigger in dimensions than the insect will have
more optical flow once the camera moves, even though if it
remains static.

I.4. Corner Detection

Corners and edges in an image are boundaries that
imply intensity variations. This algorithm tracks insects by
localizing parts in the ROI where the highest variation in
intensity is found. The corner and edge detection is described
in [17]. It is not suitable for video frames that have large pixel
intensity changes because other corners and edges may be
found inside the ROI that do not correspond to the tracked
insect.

I.5. Color Matching

The low computational cost of color based tracking
algorithms makes color an interesting feature to exploit [14].
In our proposed algorithm, the range of the pixel intensities
of the tracked insect must be provided. In each frame the
ROI is segmented in two regions: a foreground region that
contains the intensities of the insect, and a background one
that has pixels with values out of that range. It is appropriate
only when the insect and the background are highly color
contrasted and the illumination conditions of the scene are
kept relatively constant.

I.6. Simple Template Matching

Template Matching is a technique to find a template image
within a larger one. The work flow is to fit the template
image in all possible positions in the source image and find
the location where it best matches pixel by pixel [18]. Our
proposed algorithm slides the template, which contains the
insect, over the current frame and finds the pixel location in
the ROI whose neighborhood maximizes the template match.
This algorithm has a high computational cost and is affected
by insect rotations.

I.7. ORB Descriptor Matching

ORB (Oriented FAST and Rotated BRIEF) is a fast binary
descriptor, that is rotation invariant and resistant to noise,
used in feature matching [19]. In our work a template image
containing the insect must be provided to be searched in
the ROI. The algorithm takes the descriptor of one feature
in the template and matches it with all other features in the
ROI; the best match is kept. This is done for all features in
the template. On some frames one or more features may be
found, on others, none. However the latter holds on such rare
occasions. To estimate the position of the insect we average
the coordinates that the matched features occupy. This is an
expensive algorithm but it is very robust.

I.8. Correlation Tracker

Feature detection and matching between two signals
has been approached using correlation filters [20]. These
algorithms have a good performance and are robust enough
to deal with partial occlusion as well as variations in rotation,
scale and lighting conditions. The algorithm employed is the
one described in [21].

II. PERFORMANCE WITH A FIXED CAMERA SYSTEM

In order to visualize the differences between the results of
every single algorithm we analyze the trajectories obtained
for the same video. The following results were achieved
tracking an ant from the species Atta insularis [22, 23] in a
video that was recorded with a camera fixed at 1.80 m of
height. Keeping the camera static limits the trajectory of the
ant to a particular region. Once the insect escapes the field of
view of the camera, the experiment is over. Figure 1 shows the
trajectories estimated by the algorithms previously described
for this video. All the paths were plotted using raw data, there
is no filtering or processing applied at all. The maximum
uncertainty between the estimated paths is under 0.015 m.
Filtering techniques can be applied to reduce that uncertainty.
Keeping the camera fixed limits the tracking area depending
on the height of the camera. Increasing that area (rising the
camera) will decrease the tracking resolution.

Figure 1. Trajectories of a moving ant (Atta insulariis) estimated by the
tracking algorithms for a fixed camera video.
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III. PERFORMANCE WITH A MOBILE CAMERA

In addition to a fixed camera system, where only a
fixed region can be studied, mobile camera systems allow
to increase the tracking arena without losing tracking
resolution. We built a one degree of freedom mobile camera
system placed at a height of 0.30 m for testing the algorithms.
We also plan to build a more sophisticated one that allows
to determine with high precision the camera position in
two dimensions. The camera can move in the same general
direction of the insect motion as it is perceived to abandon
the original field of view.

The accuracy in the estimation of the camera movements is a
key factor for long distance tracking, due to the incremental
errors that may be induced. We store the position of the
camera on each frame to be able to transform the position
of the insect referred to the camera into ground coordinates.
Figure 2 shows the trajectories resulting from applying the
tracking algorithms to the video of an moving ant, and once
it is near the end of the field of view of the camera, the camera
was moved 0.10 m to keep it inside.

Notice that when the insect turns the uncertainty between the
estimated position given by the algorithms increases. This is
caused by the different nature of the algorithms and not by
the movement of the camera. In fact, increasing the tracking
resolution will make the algorithms estimate different sized
shapes of the same moving insect and therefore the calculated
center of mass will differ. Anyway, the maximum uncertainty
is below 0.015 m, which is of the order of the insect’s size,
and similar to the one obtained with the fixed camera setup.

Figure 2. Trajectories estimated by the tracking algorithms for a mobile
camera video. The dots in the image indicate the frame in which the camera
changed its position.

The processing rate of the algorithms in frames per second
calculated averaging over 15 videos is given in Table 1.

Table 1. Average processing rate of the algorithms

Algorithm Processing rate (fps)
Frame Differencing 207
Background Subtraction 53
Color Matching 224
Corner Detection 223
Optical Flow 202
Simple Template Matching 177
ORB Descriptor Matching 171
Correlation Tracker 56

IV. SUMMARY

We have analyzed and compared different tracking
algorithms that could be used for studying the trajectory of
a single insect. The ones that can handle camera movements
were tested using a mobile camera system. Background
Subtraction and Frame Differencing failed this purpose.
Results of the trajectories estimated were presented. Since
Frame Differencing does not need to model or learn a
background image, we propose to use it while the camera
remains static. Once it needs to be moved given that the
insect is reaching the limits of the field of view of the camera,
ORB Descriptor Matching should be employed because of its
robustness and high processing rate.
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