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Y. Bondera†, B. A. Juárez-Aubrya
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The 2020 Nobel Prize in Physics distinguished two research projects
on black holes, which are one of the most striking predictions
of General Relativity. The prize was divided in two parts. The
first half was awarded to Roger Penrose in recognition of his
singularity theorems that guarantee that black holes, which were
mathematically found since an early stage of the study of General
Relativity, are not mere highly-symmetric, curious gravitational
configurations, but robust predictions of the theory. The second
half was awarded to Andrea Ghez and Reinhard Genzel who led
two independent groups that carried out sophisticated observations
of the center of our galaxy, which suggest that therein is a
supermassive black hole. In this note, the main ideas of the theory of
General Relativity are briefly described, as well as the main features
of black holes. The two works awarded in the aforementioned Nobel
prize are described.

El Premio Nobel de Fı́sica 2020 distinguió dos proyectos
de investigación sobre agujeros negros, que son una de las
predicciones más sorprendentes de la Relatividad General. El
premio se dividió en dos partes. La primera mitad fue otorgada
a Roger Penrose y reconoce los teoremas de singularidad que
garantizan que los agujeros negros, encontrados matemáticamente
desde una etapa temprana del estudio de la Relatividad General,
no son meras configuraciones gravitacionales curiosas con alta
simetrı́a, sino predicciones robustas de la teorı́a. La segunda mitad
se otorgó a Andrea Ghez y a Reinhard Genzel quienes lideraron dos
grupos independientes que realizaron complicadas observaciones
del centro de nuestra galaxia, las cuales sugieren que ahı́ hay un
agujero negro supermasivo. En esta nota se explican las ideas
principales de la teorı́a de la Relatividad General, ası́ como las
caracterı́sticas principales de los agujeros negros. Se describen las
dos obras premiadas en el mencionado premio Nobel.

PACS: Black holes (agujeros negros), 04.70.Bw; singularity theory (teorı́a de las singularidades), 02.40.Xx; general relativity (relatividad
general), 04.20.-q

I. INTRODUCTION

Gravity is currently best described by General Relativity
(GR), a theory postulated by Albert Einstein in 1915. This
theory successfully describes gravitational phenomena from
mesoscopic to cosmological scales. Many experiments confirm
GR predictions [1]: from the effects on Mercury’s orbit
and the bending of light rays, to the gravitational redshift
that is nowadays detected in laboratories. More recently,
an era began in which spacetime perturbations, known as
gravitational waves, are regularly detected [2] and achieving
high-precision cosmological measurements is no longer a
dream [3]. This “golden age” for GR has been crowned with
many awards, including four Nobel prizes within the last
decade.

This note concerns the 2020 Nobel Prize in Physics [4], which
recognises studies on one of the most striking GR predictions:
the existence of black holes. Concretely, the above mentioned
prize was awarded to Roger Penrose “for the discovery that
black hole formation is a robust prediction of the general
theory of relativity” and to Andrea Ghez and Reinhard Genzel
“for the discovery of a supermassive compact object at the
centre of our galaxy,” for which a black hole is the leading
candidate.

GR states that gravity is an effect of spacetime geometry.
The basic idea is that spacetime’s geometry is “deformed” by

matter (and all sorts of energy, including gravity itself), which,
in turn, affects the matter propagation1. The basic variable
describing this geometry is a pseudo-Riemannian metric
tensor, which is governed by the Einstein field equations
–the equations of GR–: a set of ten nonlinear, second-order,
coupled differential equations. Importantly, the metric tensor
allows one to compute curve lengths between any two
spacetime points, thus filling spacetime with special curves
that extremize such lengths. These curves are called geodesics.
For causally-related events, they represent the paths of light or
of free point-like particles in the approximation where their
effect on the spacetime curvature can be disregarded. The
concept of geodesics plays a central role in the discoveries
that have been awarded in the 2020 Nobel Prize, as well as in
many other mathematical results and empirical observations.

While solving Einstein equations in full generality is extremely
hard, only a few months after the publication of GR, the first
exact solution was found by Karl Schwarzschild [6] while he
was serving in the German army during World War I. This
solution describes the exterior of a spherical and nonrotating
source, like a static star. More formally, the Schwarzschild
metric is a solution of Einstein equations in vacuum for a
static and spherically symmetric configuration.

When the gravity source is extremely compact, the
Schwarzschild solution has a series of mind-blowing features.

1For an accessible introduction to GR see, for example, Ref. [5].
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If the source is confined to a radius smaller than the so-called
Schwarzschild radius, rS = 2GM/c2, where G and c are
Newton’s gravitational constant and the speed of light in
vacuum, respectively, and M can be identified with the
source’s mass, then, the spacetime region contained inside
rS is causally disconnected from the exterior. That is, nothing
can travel from the interior to the exterior. Since not even light,
which achieves the maximal speed in the universe, can escape
to the exterior, these objects are called black holes [7].

What is more striking is that any spherical and nonrotaing
object that is compressed below its Schwarzschild radius
must undergo a complete gravitational collapse. In other
words, for such a body, no interaction can stop gravity
from completely compressing the object. The outcome of this
process was calculated [8] and the result was the formation of
a spacetime region where the geometry is infinitely deformed,
hidden behind an event horizon from far-away observers. The
event horizon defines the spacetime boundary separating the
interior and exterior region of the black hole, and in this case
sits precisely at the Schwarzschild radius. In fact, a black
hole is defined in mathematical terms by the existence of an
event horizon. In any case, infinite spacetime deformation is a
situation that lies outside the mathematical framework of GR,
and such a pathological region is known as a singularity.

Soon after, the generalisation of Schwarzschild’s solution
for electrically charged sources was found [9], and in 1963,
Roy Kerr discovered an exact solution of Einstein equations
for rotating bodies [10] (stationary and axially symmetric
solution). In all these generalisations there is an event horizon
and a singularity hidden behind it.

Today, we know that stars that have a mass above a certain
threshold undergo the above described gravitational collapse
when their nuclear fuel, which generates outward pressure,
comes to an end. This is because the dominant interaction
at that stage is gravity, which is attractive. Still, in the mid
20th century it was hard to believe that such a process
could actually occur in nature. At that time, two important
questions remained open: Are the singularities a feature of
the simplifying assumptions used to find exact solutions or are
they generic consequences of the gravitational collapse? And,
do black holes actually exist or are they mere mathematical
curiosities of GR? Answers to these questions were worth the
2020 Nobel Prize in Physics.

II. SINGULARITY THEOREMS

As we have mentioned, the 2020 Nobel Prize in Physics
was divided in two parts. The half that was awarded to
Roger Penrose corresponds to mathematical studies on the
emergence of spacetime singularities. Concretely, for the
development of the first so-called singularity theorem in 1965
[11]. Singularity theorems state that, under certain conditions,
GR predicts the generation of a spacetime singularity. In
particular, Ref. [11] shows that a singularity must develop
inside a black hole.

The first task to study these theorems is to rigorously define
singularities. Intuitively, a singularity is a spacetime region

where the geometry has an infinite bending. However, this is
not a good-enough definition in a theory where the dynamical
variables describe the geometry itself. In addition, one needs
to make sure that the variable describing the spacetime
bending that blows up is coordinate independent as there
are situations where problems in the coordinates give rise to
infinities. The definition of a singularity that is used in these
theorems reflects the fact that spacetime “suddenly endsı̈n a
singularity. Therefore, one can “detect” a singularity if there
are geodesics that cannot be extended any further.

The second step in proving the singularity theorems concerns
a set of geodesics, technically referred to as a congruence. A
key equation for singularity theorems is one developed by
Amal Kumar Raychaudhuri to characterise the congruence
evolution [12]. It is a consequence of Raychaidhuri’s equation
that if matter has nonnegative energy density –a reasonable
physical assumption–, or more precisely, that certain energy
conditions hold [13], then the congruences of causal geodesics
tend to focus at some point within a finite geodesic parameter
(e.g. within finite proper time for a test observer). Energy
conditions imply geometrical conditions by the Einstein
equations, and can thus be imposed even in spacetimes
without matter.

The central concept introduced by Penrose to reach his
conclusions is the following: consider now a two-dimensional,
spacelike, closed set in spacetime. We can imagine such a
set as a spherical surface or deformations thereof. There are
two congruences of lightlike geodesics –the paths of light rays–
orthogonal to this surface, defined by outgoing and ingoing
sets of lightrays. Penrose defines such a two-dimensional set
as a trapped surface if both its ingoing and outgoing lightlike
congruences have a focusing behaviour towards the surface
itself. Thus, congruences tend to locally meet in the future:
they are trapped! The key insight is that such trapped surfaces
exist generically in the interior region of black hole spacetimes,
whether they are static and spherically symmetric or not.

The Nobel-winning result that Penrose showed is that if
a spacetime satisfies the Einstein equations and is globally
hyperbolic (i.e., has well-posed dynamics) with a noncompact
Cauchy surface, and a suitable energy condition holds, then
the existence of a trapped surface implies the existence of a
singularity – the spacetime cannot be null geodesically complete
in the sense that there is at least one null ray that “ends”, thus
defining a singularity.

The proof is by contradiction and, remarkably for its time,
applies techniques of differential topology to GR. It relies on
defining the set of all points to the future of the Cauchy
surface (technically in its future time development) that
can be joined to the trapped surface by a future-leading
smooth timelike curve. The boundary of this set is a compact
lightlike surface, since lightrays meeting the trapped surface
form a caustic in the future at finite geodesic parameter
due to the energy condition. The contradiction is now
achieved by assuming sufficiently “long”null curves on the
lightlike surface (which is acceptable if one has null geodesic
completeness) and constructing a homeomorphism between
this compact lightlike surface and the noncompact Cauchy
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surface of spacetime. Note that there are no assumptions
regarding spacetime symmetries in this proof, and for the
matter fields it is only assumed that they are physically
realistic in the sense of the energy conditions.

The above mentioned result was the first singularity theorem
to be proven, but not the last! Soon after, Roger Penrose and
Stephen Hawking were able to generalise this result [14].
In particular, they were able to prove singularity theorems
that do not require the assumption that spacetime must be
globally hyperbolic and, importantly, used similar techniques
to show that, under certain assumptions, the singularity at the
beginning of the universe, i.e., the Big Bang, is an unavoidable
consequence of GR.

III. ASTROPHYSICAL EVIDENCE OF SUPERMASSIVE
BLACK HOLES

According to the results discussed in the previous section,
it is clear that the mathematical structure of GR predicts the
existence of singularities, which are generally believed to lie
inside a black hole. Yet, at the time it was unclear if there were
black holes lurking out there in the universe. There are now
several empirical indications of the existence of black holes;
one of them was awarded with the other half of the 2020
Nobel Prize in Physics. Other experiments that have collected
evidence supporting the existence of black holes include the
detection of gravitational waves that are compatible with
what is expected from binary black hole collisions [2], and the
“picture” of the object at the centre of the Messier 87 galaxy
by the array called Event Horizon Telescope [15].

The black holes evidence that merited Andrea Ghez and
Reinhard Genzel the 2020 Nobel Prize was obtained by
observing the centre of our galaxy. While each one of the
Nobel Laureates lead an independent experiment [16,17], both
of these are similar and their basic principle is as follows: if
one can trace the path of stars located close to the centre of
the galaxy to the point that one can reconstruct their orbits,
then, using Kepler’s third law, it is possible to infer the mass
of the central object. In addition, one can set an upper limit
on the radius of the central object, since it must be smaller
than the perihelion of the star’s orbit. Interestingly, for the
object at the centre of our galaxy, the mass is estimated to be
several million times the mass of the Sun –the orbiting stars
can be seen as test particles following geodesics–, but its size is
such that it is smaller than the corresponding Schwarzschild
radius. In addition, this central object does not seem to emit
light. Therefore, the best suiting candidate to lie at the centre
of our galaxy is a black hole.

It should be mentioned that these astronomical observations
are daring, as there is dust in our light path to the centre of our
galaxy, which absorbes visual light, and a high resolution is
required. Therefore, the observations are done in the infrared
and using sophisticated adaptive optics techniques to correct
for atmospheric disturbances. The group of Andrea Ghez [16]
uses a 10 m telescope at the W.M. Keck Observatory, which is
located in Hawaii, while Reinhard Genzel’s group [17] utilises
the Very Large Telescope located in the Atacama desert, in the
northern part of Chile.

Note that the object in the centre of our galaxy has a mass that
is many orders of magnitude larger than the mass of a black
hole that can be generated by the gravitational collapse of a
star. Hence, this type of black holes are called supermassive black
holes. Remarkably, to date there is no compelling explanation
of the mechanisms that produces these black holes [18].

IV. CONCLUDING REMARKS

Black holes are one of the most intriguing predictions of
GR and we now have mathematical and empirical evidence
that these objects do exist in our universe. Crucially, the
role of black holes in future scientific developments seems
bright: on the one hand, understanding how supermassive
black holes arise is one of the most important questions in
astrophysics. On the other hand, singularities can be regarded
as a breakdown of the theory at hand, GR, suggesting that
there should be a new theory of gravity that resolves the
singularities. It is believed that this new theory should also
be compatible with the quantum description of the matter
fields, and thus, it goes by the name of quantum gravity.

In the quest for quantum gravity, black holes must play a
central role. In fact, as Hawking postulated [19], if quantum
phenomena and gravity are considered together, black holes
are not as dark as we think. They surprisingly emit radiation
at the so-called Hawking temperature and should, in principle,
eventually evaporate. In any case, the yet-unknown quantum
gravity theory will, very likely, revolutionise Physics, and
black holes could be key players in the construction of such a
theory. While the 2020 Nobel Prize was awarded to scientific
projects that solved very important questions, they also raised
new questions that should improve our understanding of
concepts like space, time, and gravity.
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