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The 2021 Nobel Prize in Physics was jointly awarded to Syukuro
Manabe, Klaus Hasselmann and Giorgio Parisi, “for groundbreaking
contributions to our understanding of complex physical systemas”.
The Prize was divided in two parts, Manabe and Hasselman were
recognized for their modelling of Earth’s climate and Giorgio Parisi
for the discovery of the interplay between disorder and fluctuations in
physical systems. Here we review the more important aspects of
these contributions and try to put them within a unique conceptual
framework.

El premio Nobel en Fı́sica del 2021 fue otorgado a Syukuro
Manabe, Klaus Hasselmann y Giorgio Parisi, por el impacto de
sus contribuciones a la comprensión de los sistemas complejos.
El premio se dividió en dos partes, Manabe y Hasselmann fueron
reconocidos por sus trabajos de modelación del clima de la Tierra y Giorgio
Parisi por haber descubierto la conexión entre el desorden y las fluctuaciones
en los sistemas fı́sicos. Aqui resumimos los aspectos más importantes
de estas contribuciones tratando de colocarlas dentro de un mismo
marco conceptual.

PACS: Complex systems (sistemas complejos), 89.75.-k; modeling of global climate (modelación del clima global), 92.70.Np

I. INTRODUCTION: FLUCTUATIONS AND DISORDER

When physicists talk about fluctuations they usually formalize
the idea using a Langevin-like equation [1] that in its simplest
version takes the following form:

dx
dt

= −
∂V(x)
∂x

+ η(t) (1)

where x represents the system’s coordinate, V(x) is a potential
and η encodes the information about the fluctuations in the
system. The latter term is a “noise”function defined by its
statistical properties, for example, the mean and the variance.
The task is to understand, given V(x) and the statistical
properties of η how x evolves in time. The difficulty comes
from the fact that given the statistical nature of η there is a
possible ensemble of x(t) consistent with equation (1).

This ensemble of trajectories can be characterized by a
probability distribution that, under very general conditions,
and in the long time limit, can be written as [2]:

P(x) =
e−βV(x)

Z
(2)

where β is defined by the fluctuations in η, and Z is a partition
function.

Things become much more difficult when x is not a coordinate,
but a bunch of them, for example a high-dimensional vector
~x, or more generally when it is a field φ, with both spatial
and temporal coordinates φ(~r, t). It is even harder when V(~r)
also is defined statistically. For example, when the interaction
between two particles in the system depends specifically on
the two particles under consideration. In this later case we
often say that the system is disordered.

In these general situations equation (1) may adopt the form of

a “Langevin-like equation”, i.e.:

dφ(~r, t)
dt

= F(~r, φ(~r)) + η(~r, t) = −
∂V(~r, φ(~r))
∂φ(~r)

+ η(~r, t) (3)

where φ is a vector field, F(~r, φ( ~r, t)) is a general function that
sometimes can be written as the derivative of a potential V
that may depend on the coordinate ~r and the field. As before,
η plays the role of the noise. If the noise is absent we are in the
presence of a deterministic equation for the field φ.

In what follows we explain how the work of Manabe,
Hasselmann and Parisi can be cast within the above described
framework and which were their main contributions to their
respective fields of research.

II. CLIMATE MODELS OF THE EARTH

One half of the Nobel Prize in Physics of 2021 was awarded to
Pr. Syukuro Manabe and Pr. Klaus Hasselmann. Their work
is at the basis of our current knowledge of the Earth’s climate
and the influence of humans on it.

II.1. Syukuro Manabe: Carbon Dioxide and Radiation Balance

Probably the older and at the same time modern model for
climate dynamics was proposed by S. Arrhenius already in
1896 [3].

In short, the Earth receives energy from the Sun, and radiates
energy as a black body. The atmosphere is an intermediate
layer that mitigates the energy arriving from the Sun, and
radiates to the empty space, and back to the Earth, the energy
received from the Earth’s radiation.
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This can be considered as the starting point for every model
of Earth’s climate. For example, the effects of CO2 in the
temperature of the Earth can be taken into account by
changing the radiative properties of the layer representing
the atmosphere. This was the approach followed by Manabe
and Wetherald [4], in what is now considered for many as the
most important paper in the history of climatology [5].

Figure 1. Arrhenius picture of the Earth climate. The Earth receives energy
from the sun and radiates as a black body. The atmosphere, also radiates, to
the Earth, and to the space.

For simplicity, they considered the layer representing the
atmosphere as a vertical one-dimensional system on top of
the Earth’s surface –remember that, back in 1967, computers
were not particularly powerful. This layer had the usual
radiative properties, but they included on it, the effect of water
vapor convection. This allowed them to trace the influence of
the humidity profile of the atmosphere in the temperature.
In practice it means that the temperature dynamics of the
Earth would depend on two coupled equations, one for
the temperature itself, and the other for the distribution of
the humidity in the layer. To check the relevance of their
model, they compared their results in two different cases: i)
considering the actual concentration of specific gases in the
atmosphere and ii) removing these gases. They found that the
equilibration temperature of the Earth was larger in the first
case.

With the knowledge that we have today on the Greenhouse
effect, the result may look as expected, but it was not in 1962.
Actually, it remained unnoticed for almost ten years, only to
be now recognized as one of the first modeling approaches
supporting the impact of mankind in the heating of the Earth.

More than 10 years later Manabe and Wetherald [6] published
another breakthrough paper introducing a Global Climate
Model (GCM) that included the dynamics of heat, mass,
momentum and the radiation around the globe where again
the studied the role of CO2 on the Earth’s temperature.

II.2. Klaus Hasselmann: Weather and Climate

If the GCM introduced by Manabe and collaborators can
be considered as a deterministic theory for the fields
(temperature, density of gases, water vapor, etc.) describing
the dynamics of the Earth’s climate, the work of Pr.

Hasselmann went a step further, coupling these equations
–actually an abstract version of them– to the Earth’s weather
[7].

In Hasselmann’s picture, the weather would act as a noise
in the framework of Global Climate Models. Let us call ci
the variables describing the climate, as above, and wi new
variables that will describe the weather, also locally. Thus, in
a very general way we can write:

ċi = fi(~w,~c) (4)
ẇi = gi(~w,~c) (5)

(6)

The intuition is that wi and ci vary within different time scales.
The weather variables, wi change faster than ci. Then, when
studying the dynamics of the fast variables one can assume
that the slow variables are constant. On the contrary, in the
study of the dynamics of the slow variables, the fast variables
can be substituted for their average values and some noise
representing the fluctuations.

In short:

ċi ≈ fi(〈~w〉~c + ~w f luc,~c) (7)

where, 〈~w〉~c represents the average of the variable ~w given the
state of the climate, while~c and ~w f luc represent the fluctuations
of the weather. Expanding the expression above, we get:

ċi ≈ f (〈~w〉~c,~c) +
∂ f (〈~w〉~c,~c)

∂~c
~w f luc = −

∂V(~c)
∂~c

+ σ(~c)η(t) (8)

that takes the form of a Langevin-like equation, see equation
(3). Within this picture the weather acts as a noise in the
framework of Global Climate Models. The relevance of this
work can not be overestimated, it brought to the models of
the climate, all the machinery of the stochastic systems of
differential equations.

But Hasselmann went farther. In a series of papers [8, 9] that
span almost 20 years he approached a similar but conceptually
different problem. How to compare the results of the models
with those of observation? The problem is specially difficult
because both are prone to errors and fluctuations and are
defined over spatial and temporal scales. Mathematically it
can be defined starting from a regression equation:

~c = X~a + ~w (9)

where ~c represents the measurement of the fields for the
climate, the matrix ~X contains the estimate response patterns
obtained from Global Climate Models and ~w is usually
a Gaussian noise reflecting the weather impact on the
measurements. The goal is to obtain ~a as a function of these
known parameters. The vector ~a indeed gives us information
about the importance of the different variables X in the
measurement ~c.

III. DISORDER

The second half of the Nobel Prize in Physics of 2021 was
awarded to Pr. G. Parisi for his discovery of special types
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of order in disordered systems. This discovery has found
deep implications in fields as diverse as condensed matter,
mathematics, biology, neuroscience and machine learning.

III.1. Giorgio Parisi and replicas

Giorgio’s more original contribution to science –and there
were many– can be introduced starting from the most
celebrated model of Statistical Physics, the Ising model, whose
Hamiltonian has the form:

H = −J
∑

i, j

sis j (10)

where si and s j are spins, and J represents an interaction. The
corresponding equilibrium distribution his Boltzmann-like:

P({s}) =
eβJ
∑

i, j sis j

Z
(11)

This equation is reminiscent of (2).

The physics of this model is quite well understood. Landau’s
mean field solution [10] provides a qualitative picture of the
continuous phase transition from the paramagnetic phase
at high temperatures to the ferromagnetic phase at low
temperatures. Already in 1944 Onsager, with an unequal
tour-de-force of mathematical physics, solved the problem
in two dimensions. Later on, the celebrated Renormalization
Group Theory for which Wilson was awarded in 1982
the Nobel Prize, provided the conceptual framework to
understand and approach this and other models with
continuous phase transitions.

Figure 2 provides a simple picture of the physics behind this
model.

Figure 2. Landau’s Free Energy for the Ising model.

At very high temperatures, the free energy has one minimum
at zero magnetization, m = 0. Below a critical temperature
Tc the system magnetizes spontaneously and at every
temperature T the magnetization can be both positive (m > 0)
or negative (m < 0). These two solutions correspond to the
two minima of the Free Energy represented in Figure 2.

However, the presence of disorder in the Hamiltonian (10)
may change dramatically the physics of the problem. Consider

for example when H = −
∑

i, j Ji jsis j where Ji j is 1 or -1 , with
probability 1/2. In Figure 3, we show a simple representation
of the problem for 4 spins in a square lattice.

Figure 3. Four spins interacting in a frustrated square lattice. Notice that the
right bond is not satisfied. The interaction is ferromagnetic, but the spins are
oriented in opposite directions
Notice the impossibility to satisfy all the bonds at the same

time. Independently on how we orient the spins, at least
one of them is always unsatisfied. We call this phenomenon
frustration, and is at the basis of the phenomenology behind
what we now know as disordered systems. In these models it
is hard –if not impossible– to minimize all the interactions
between the elements, i.e., particles, spins, variables, of a
system. In the case of the disordered Ising model presented
above, the frustration arises as a result of the disorder, but in
other models, like structural glasses, the frustration is a direct
result of the dynamics of the model.

The picture emerging is summarized in Figure 4 where we
sketch the kind of free energy landscape expected for this
kind of models.

Figure 4. Schematic representation of the Free-Energy landscape for a
frustrated system. The free energy is characterized by exponentially many
minima.

The many minima, usually exponentially many, appear as a
result of the frustration in the system.

To estimate the free energy of the problem one must compute:

F = −〈log
∑

s

expβ
∑

i j Ji jsis j〉J (12)
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where 〈. . . 〉 indicates the average over the disorder. This
average over a logarithmic function is a difficult operation
and to deal with it one must resort to the replica trick log x =
lı́mn→0

xn
−1
n . With this trick, all the mathematical difficulty is

enclosed into the average over the n-power of the partition
function

〈Zn
〉J = 〈

∑
sn

expβ
∑

a
∑

i j Ji jsa
i sa

j 〉J (13)

After a lengthy algebra necessary to compute 13 the average
free energy (12) will depend on a complex order parameter Qab
that encloses all the information about the solution structure
of the system. The celebrated Parisi’s solution to this problem
was a clever and original proposal for the structure of this
matrix [11, 12]. A picture representing it is shown in Fig 5.

Figure 5. Schematic representation of the Parisi’s ansatz, for the matrix
Qa,b. In its more general form it is parameterized by an infinite number of
parameters q0, q1, q2, etc...

But Parisi went further, providing an interpretation for the
elements of this matrix:

Qa,b =
1
N

∑
i

〈si〉a〈si〉b (14)

where a and b are replica indices, and Qa,b could be interpreted
as the overlap of the states within different replicas. It turns
out, that this is also a good representation of the properties of
the states of the original system, such that:

P(q) =
∑
a,b

wawbδ(q −Qa,b) (15)

where wa and wb represent the Boltzmann weights of the
states a and b, and P(q) is the disorder-average distribution of
overlaps, and plays the role of the order parameter. Possible

forms of P(q) appear in figure 6:

Figure 6. Order parameter P(q) for different models A: Ferromagnet. B:
Model with 1-Step Replica Symmetry Breaking. C: Model with a full Replica
Symmetry Breaking solution

Although all this machinery reflects the solution of a
mean-field model designed to study a rare material, it was
soon discovered that it could be used in the study of many
more systems. Combinatorial Optimization problems [13–15],
Neural Networks [17], Granular Materials [16], Disordered
Lasers [18], and more recently also interacting Metabolic
Networks [19], are all problems that found in this approach
a mathematical and conceptual framework testable in real
experiments or in computer simulations.

IV. CONCLUSIONS

I must confess that, when the Editor asked me to write this
article, I had some doubts. I was very familiar with Parisi’s
work, but I literally knew nothing about Earth’s climate. I was
even surprised by the combination of the names and fields of
research involved in the Nobel Prize this year. While Parisi is
an all around statistical physicist, with contributions that span
over a wide range of fields, Climate Physics was not a subject
in which he spent too much effort. The work of Manabe and
Hasselmann is definitively at the foundation of our modern
understanding of Earth’s climate, but its connection with
Statistical Physics was essentially circumstantial. However,
after a couple of weeks reading intermittently the works of
these climate scientists, and after reviewing the original works
of Parisi, I think that I understand better the combination
of names and the true meaning of this selection. Manabe
devoted his efforts to build a proper theory of Earth’s climate;
he did so by introducing simple models, original ideas,
but also advanced computational techniques. Hasselmann
imported into Climate Physics important mathematical ideas
previously developed in other fields. With their work, they
contributed in a fundamental way to crack one of the most
complex systems we know, i.e. Earth’s climate. Furthermore,
their work had important implications in our understanding
of the impact of human kind in the planet. Parisi, on the
other hand, devoted the last 30 years of his career to shed
light into a large collection of problems from different fields
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enclosing all of them within a single conceptual framework.
In my opinion, these are the three scientifically sound ways to
attack scientific problems. To increasingly improve the models
describing them, keeping the physics/science comprehensible,
to attack them by importing techniques developed in other
fields, or to enlarge our understanding looking for concepts
and techniques that could be shared by many of them at the
same time. I am glad that the first Nobel Prize in Physics
specifically awarding the study of Complex Systems embraces
all these approaches.
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