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One of the most thrilling features of Physics is the possibility of
establishing analogies between apparently distant areas. Here, we
explain the parallel between a pile of grains interacting mechanically
with each other, and a “pile” of superconducting vortices. In both
cases the macroscopic slope of the pile is maintained by a very
nonlinear avalanche process. Furthermore, both types of piles
logarithmically relax in time due to “agitational” or thermal effects,
aiming at a state of equilibrium.

Uno de los aspectos más apasionantes de la Fı́sica es la posibilidad
de establecer analogı́as entre áreas aparentemente distantes entre
sı́. Aquı́ explicamos el paralelo entre una pila de granos que
interactúan mecánicamente entre sı́, y una “pila” de vórtices
superconductores. En ambos casos la pendiente de la pila se
mantiene mediante avalanchas altamente no lineales. Además,
ambos tipos de pilas se relajan en el tiempo debido a efectos
“agitativos” o térmicos, apuntando hacia un estado de equilibrio.

PACS: Avalanches (granular systems) (avalanchas (sistemas granulares)), 45.70.Ht; Vortex pinning (superconductivity), anclaje de vórtices
(superconductividad), 74.25.Wx; Criticality, self-organized (criticalidad, auto-organizada), 05.65.+b; sandpile models (modelos de pilas de
arena), 45.70.Cc

I. INTRODUCTION: FLUCTUATIONS AND DISORDER

It was perhaps Galileo who first realized that provocative
titles are crucial to capture the attention of potential readers
of science books. In Dialogues concerning two new sciences
(1638) [1], he actually introduces two new disciplines: I might
call them the science of motion, and materials science. The
book is an undisputed masterpiece, so it is hard to criticize
its somewhat pompous title. Curiously, the idea of titles
announcing new sciences has become fashionable again these
days. Judge by yourself: “Sync: The Emerging Science of
Spontaneous Order” (2004) [2], “Nexus: Small Worlds and
the Groundbreaking Science of Networks” (2003) [3], “A New
Kind of Science” (2002) [4] and “How Nature Works: The
Science of Self-Organized Criticality” (1996) [5]. The latter,
written by the Danish physicist Per Bak, immediately attracted
many followers as well as detractors. While there is consensus
today that the book’s title is not a paradigm of objectivity, there
is no doubt that the subject of Self-Organized Criticality (SOC)
concentrated a lot of attention on granular matter by cleverly
using the granular pile as a physical paradigm.

In any case, I believe that SOC strongly contributed to the
incorporation of physicists to the study of sandpiles (and, in
general, granular matter) [6–10], a subject almost exclusively
tackled by engineers before the end of the XX century (See, for
example, [11]).

However, you do not need Self-Organized Criticality to realize
that the granular pile shown in Fig. 1 is extraordinary. And it
is not because you rarely see a beautiful picture of a pile of
drywood termite excrement: it is extraordinary just for being a
pile. First of all, we must notice that most of its slope is straight,
in spite of the fact that it extends for a length much larger than
the size of the individual grains. How is it possible that grains,
which only seem to interact when they are directly touching

their next neighbors, can organize themselves in such a large
structure? Human beings can form almost perfect lines and
nice platoons, but it is generally achieved by means of some
kind of centralized organization that directly reaches many
individuals at various distances from the center. But there
is no such thing in a granular pile. In addition, if you form
the pile by slowly adding grains from the top, its smooth
slope results from landslides (or avalanches). You have also
probably observed that the general shape of the pile is very
robust: if you form a new pile on a table by dropping grains
of the same kind from above you will reach approximately
the same angle relative to the horizontal, even if you do not
deliver them exactly in the same way. You will get the same
robustness using beads, sand, termite excrement... It illustrates
self-organization.

Figure 1. A pile of termite excrement. The width of the base of the actual pile
is somewhat larger than 5 cm.

SOC proposes a mechanism where local interactions between
neighboring grains are able to explain the emergence of a pile
with straight slopes. The simplest computational way to work
the idea out is known as the BTW model [12], illustrated in Fig.
2. We have a table on which we pour identical grains at random
places, one by one. Then, we apply very simple rules trying to
mimic the way a “real” pile becomes locally unstable. In the
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digital world of the model, the grains cannot land everywhere,
but just on 9 sites of a grid, arranged as illustrated in Fig. 2(a).
If one site reaches a threshold of 4 grains, it is emptied out:
each of the four grains moves to the neighboring sites located
at the top, bottom, right and left relative to the initial one –that
is called a toppling event.

Figure 2. The BTW model in images. (a) evolution of an avalanche in a small
system of 9 cells. (b) Temporal evolution of avalanches for a much bigger
system. (c) Statistical distribution of avalanche sizes.

If, as a consequence of this action, any of these four sites
reaches the threshold of 4 grains, the process repeats again,
until all sites within the 9-site grid contain less than 4 grains.
In the process, some grains may eventually abandon the 9-site
region by crossing its boundary. Only when all toppling events
are completed, a new grain is added to the system from the
top. Adding grains is a patient and slow process; avalanches
are unexpected and fast: the system is very nonlinear.

To illustrate these rules, the first graph at the left of Fig. 2(a)
shows a “metastable moment” in the grid, where all cells
contain less than 4 grains (the numbers correspond to the
number of grains on each site). In the second graph, one grain
has been added to the center cell, which makes it reach the
4-grain threshold. So, the next graph shows how the center
cell has been reset to zero, because all grains have emigrated
from it to the four neighboring sites, which accordingly have
increased in 1 their number of grains. In the process, the
bottom center cell has reached the 4-grain threshold, so the last
graph indicates that it has been subsequently reset to zero, and

additional grains have been added to the cells located above
it, and to its right and left a fourth grain had nowhere to go,
and was removed through the bottom boundary of the table
(If one averages the number of grains added to the grid from
top over a long period, it must be equal to the average number
of grains abandoning the grid through its border. But it does
not mean that you have always one grain exiting when one
grain is added: sometimes, many grains can be added and no
grain abandons the system. . . and eventually you may add
one grain, and a bunch of grains abandon the system).

Finally, the system is back in calm –all cells are below the
threshold– so a new grain can be added from top. If we define
an avalanche as the number of toppling events between one
addition and the next, we have described here an avalanche
of value 2 (you can define many types of avalanches, like the
number of sites involved in toppling events and the number
of grains that abandoned the system, called off-the-edge
avalanches). Of course, we cannot go far with this 9-cell table:
the graphs (b) and (c) in Fig. 2 illustrate results from a much
larger system, studied for a much longer time. Fig. 2(b) shows
the temporal evolution of avalanche sizes: the horizontal axis
corresponds to the time, which is equivalent to the number of
grains added from top in the BTW’s model; while the vertical
axis corresponds to the avalanche size that we will call s.
So, for example, we can identify an avalanche involving 2000
toppling events taking place when the grain number 24625
was added to the system. Looking at the whole graph, it seems
that there are avalanches of many different sizes: no specific
size seems to dominate. In fact, there could be avalanches
involving the whole grid: somehow, short-range interactions
between neighboring grains can involve the whole pile. Let us
now sort the avalanches by size for a very long experiment:
for example, we count 100 000 avalanches of size 1, 10 000
avalanches of size 10, 1000 avalanches of size 100, and so on.
Then, we plot the results as shown in Fig. 2(c) (open circles),
that we will call an avalanche size distribution (ASD). The
fact that the plot decreases, indicates that large avalanches are
rare, while small avalanches are common. Moreover, the data
follows a power law (indicated as a solid line): P(s) ∝ s−α. This
kind of distribution indicates that, if you look the graph within
any time window, it looks exactly the same: it is “fractal” in
the time domain. For the particular case of the BTW model,
the power law has α = 1.

Another fundamental (and often forgotten) result from the
BTW model is that it gives piles with nearly straight slopes,
in spite of the fact that the toppling rules are “local”.
So, this simple computational automaton tries to justify
why grains that only interact with their next neighbors
can produce macroscopic structures much larger than the
grains themselves. Moreover, small changes in the rules
of the BTW model still produce piles with straight slopes
and power-law distributed avalanches. If, for a given set
of the rules, the resulting power law shows a robust slope
value, statistical physicists say they have discovered a new
“universality class” (In real experiments, the value of may
move within the range between 1 and 2). In other words, our
slowly-fed digital piles are very robust in terms of shape,
and that robustness is connected with a “slope-adjusting
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mechanism” mediated by power-law distributed avalanches.
The robustness can be connected to self-organization, and
the power-law distribution reminds critical phenomena– an
older and very successful field of Physics [13]. So Bak and
co-workers called their idea “Self-Organized Criticality”. It is
safe to say that no one minds too much the self-organization
ingredient of the theory, but the Criticality part has been
widely criticized. And for good reason: many early attempts
to find power-law distributed avalanches in real piles did not
show undisputable power laws.

Figure 3. Relaxation of a pile of excrement. (a) Original pile. (b), (c), (d), (e)
and (f) are images of the piles after 1, 2, 3, 4 and 5 taps, respectively.

Some of those early experiments were made in a rush,
inspired by the BTW model, and used various avalanche
definitions. It was not clear if the comparison between the
resulting avalanche distributions and those generated by
BTW-like models were rigorous enough. For example, one
of those experiments consisted in slowly pouring sand on the
circular plate of a very precise digital scale, and measuring
the variations in the pile’s mass. Those avalanches were
only related to grains falling off the plate: They mimicked
best “off the edge” events like the one illustrated in right
picture of Fig. 2(a). In fact, one cannot expect a true power
law for the statistical distribution of those avalanches. Other
experiments involving avalanche definitions closer to the
BTW model were performed on piles that were too small to
produce trustable statistical distributions of avalanche sizes:
the existence or not of a power law could only be assessed by
careful manipulations of experimental data related to finite
size scaling.

However, carefully controlled experiments in bi-dimensional
piles of beads have shown that the avalanches are indeed
distributed following a nice power-law, with a slope [14, 15].
As an extra benefit, being the slope larger than 1, it can
be argued that there exists the possibility of predicting the
occurrence of a large avalanche based on the previous history
of avalanches –a controversial idea that might be applied
to earthquakes, another phenomenon consisting in “tectonic
plate slippages” distributed as a power law [16].

The BTW model proposes an avalanche-like mechanism by
which a granular pile reaches a meta-stable state with nice
straight slopes as it is slowly fed with new grains. However,
it does not deal with the problem of how a static pile reaches
the true equilibrium. In order to make the pile relax into a
stable equilibrium state, we may apply the method shown in
Fig. 3. There, panel (a) shows a picture of a termite excrement
pile formed by slowly adding grains from top. The pile has

been formed on the surface of a cardboard box, which visibly
vibrates as it is finger-tapped. The second, third. . . sixth
pictures shown in Fig. 3 correspond to the original pile after
applying one, two. . . five taps on the cardboard. Notice that
the slope of the pile decreases very slowly. Common sense
indicates that, after an infinite number of taps, the pile would
become completely flat, reaching a state of stable equilibrium.
When a rigorous experiment is performed, it can be shown
that the slope of the pile decreases logarithmically with the
number of taps [17].

One of the most thrilling possibilities in science is establishing
analogies between fields that are apparently very far away
from each other. Here we have one of those beautiful
examples: as in the case of the tapped granular pile,
magnetization also relaxes logarithmically in the case of
superconductors as time goes by. Type II superconductors
are peculiar materials that do not allow magnetic fields to
penetrate them. . . up to a certain point. If the magnetic
field reaches the so-called “first critical field”, a compromise
is established between the magnetic field that “wants to
penetrate the material” and the material, who “doesn’t want
to be penetrated”: the field gets in, but not flooding it as a
continuum. It enters as tiny field-containing spots surrounded
by current swirls called Abrikosov vortices [18]. Two forces
compete in the penetration process. On the one hand, vortices
repel each other at short distances –just as grains of sand
repel each other when they collide. Thanks to that, as the
external field eagerly “pushes” the vortices in through the
materials’ boundary, the vortices push each other inside –just
as the gravitational force make grains move down the slope
of a pile. On the other hand, non-superconductive defects in
the superconductor (called “pinning centers”) tend to “trap”
the vortices, acting as a barrier against their penetration –in
the case of grains, they are locally trapped into little bumps
on the surface of the pile, preventing them to roll all the
way down. The competition between the two effects results
in a “vortex pile” where the vortex density is large near
the borders of the materials, and decays towards the center,
forming a straight slope. It is analogous to slowly filling a
shoebox with grains of sand from its borders [19, 20]. If we
stop adding grains and the shoebox is shaken, the granular
slopes will relax inside the box. The same happens with
our microscopic vortices, but the role of shaking is played
by the agitation associated to conventional temperature: the
vortex pile slope will decrease slowly in time, resulting
in a logarithmic relaxation of the magnetization –which is
just a macroscopic way to measure it. Curiously, this effect
–called flux creep– was studied in detail years before granular
relaxation for conventional superconductors [21], and then for
high temperature superconductors [22–24], in spite of the fact
that it requires the use of relatively sophisticated equipment
and cooling systems.

In principle, one could modify the rules of the BTW model
in order to understand relaxation, but now I prefer good
old-fashioned statistical physics. The top left panel of Fig.
4 sketches the slope of a granular pile at the very moment
the tapping starts. At the right, I show the corresponding
“washboard” potential landscape, where grains are trapped
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into potential wells, which mimics the trapping of grains at
the irregularities of the pile’s surface.

Figure 4. Jumping out of the well. A classical “washboard potential” model
useful to understand the relaxation of piles of grains or superconducting
vortices.

The overall inclination of the washboard potential is
proportional to the difference in the number of grains trapped
into adjacent wells. Due to the taps, the grains may eventually
escape from the potential wells: they have a large probability
to escape downhill (red arrows), and a smaller one to escape
uphill (blue arrows).The second row in Fig. 4 is analogous to
the first one, but after the application of a certain number
of taps. The net downhill motion of grains has reduced
the slope of the pile and, correspondingly, the slope of the
washboard potential. The smaller inclination implies that
the probability to escape downhill is smaller than before,
while the probability to escape uphill is larger than before:
that implies that the net downhill motion is smaller, and the
inclination process is slower. After an infinite number of taps
we get to the bottom row in Fig. 4, where the washboard
potential has become horizontal, and the probabilities to
escape uphill and downhill are identical: there is no net
granular motion. So, the system has reached equilibrium, and
the washboard potential stops evolving. My description can
be put in mathematical terms using the methods of classical
statistical mechanics where the taps mimic an “effective
temperature”, which allows to demonstrate that the slope of
the pile decreases logarithmically as the number of taps (i.e., as
the time) increases. A similar model can be used for the case of
superconducting vortices, resulting in a logarithmic decrease
of magnetization [25], and potentially explains a phenomenon

that occurs in magnetic materials called “magnetic viscosity”
[26].

By the beginning of the 1990’s I was familiar with
superconducting vortex physics: our group systematically
made relaxation experiments, for example. Then, I discovered
the BTW model for a pile of grains, which motivated me to
search for avalanches in vortex systems. Over the years, I
concentrated more and more on avalanches and relaxation
of granular matter. All in all, a beautiful analogy between
distant fields of Physics has modulated my scientific career
for decades. It has been a joyful trip.
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