
Rev. Cubana Fis. 39, 81 (2022) ARTÍCULOS ORIGINALES
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We evaluate the use of laser-induced breakdown spectroscopy
(LIBS) coupled with chemometric methods as a fast and simple
technique for identifying diseased tissue in prostate cancer samples.
The experimental setup consisted of a neodymium-doped yttrium
aluminum garnet (Nd:YAG) laser in a burst-mode regime, with
differing time delays for the spectrometer readings. To improve
classification accuracy, principal component analysis (PCA) was
coupled with neural analysis (NA), achieving a high identification
accuracy of 97 %. It can be concluded that LIBS has the potential
to serve as a technique for the detection and diagnosis of human
prostate cancer.

Evaluamos el uso de la espectroscopı́a de ruptura inducida por láser
(LIBS) acoplada con métodos quimiométricos como una técnica
rápida y sencilla para identificar tejido enfermo en muestras de
cáncer de próstata. El dispositivo experimental consistió en un láser
de granate ytrio-aluminio dopado con neodimio (Nd:YAG) en modo
de pulsos, con diferentes retardos temporales para las lecturas
espectrométricas. Para mejorar la calidad de la clasificación, se
acopló el análisis de componente principal (PCA) con análisis neural
(NA), lográndose una gran precisión de identificación, del 97 %. Se
concluye que el LIBS posee el potencial de servir como técnica para
la detección y diagnóstico de cáncer de próstata humano.

PACS: Laser (láser), 42.55.-f; Spectroscopy (espectroscopı́a), 42.62.Fi; Laser-produced plasma (plasma producido por láser), 52.50.Jm;
Cancer (cáncer), 87.19.xj.

I. INTRODUCTION

Early detection is one of the most important factors
determining cancer survival rates, but it remains a challenge,
even after extensive and continuous efforts. In many cases,
diagnosis depends on the subjective analysis of a biopsy
sample. Other commonly used techniques, such as computer
tomography and magnetic resonance imaging, are expensive,
time-consuming, and do not provide detailed information
about the boundaries between the tumor and the normal tissue
surrounding it, which is essential to minimize the trauma
induced during surgical operation. Thus, the development
of fast and reliable detection methods could considerably
improve clinical outcomes.

Laser-induced breakdown spectroscopy (LIBS) is a technique
that meets all the requirements mentioned in the previous
paragraph [1]. It has a growing impact on and popularity
in compositional analysis because of its portability, high
speed, low cost, capability to perform close to immediate
identification, and the fact that it does not require chemicals
[2]. The technique involves short laser pulses capable of
ablating a small amount of material, thereby creating plasma
momentarily. An optical fiber collects a portion of the light
emitted from the plasma and delivers it to a spectrometer. The
captured spectra constitute a “fingerprint” associated with a
sample’s elemental composition.

Since the first published report on the use of LIBS for the
detection of cancerous tissue in 2004 [3], several research
groups have developed different novel approaches for
this potential application. These include the LIBS-based
immunoassay (Tag-LIBS) [4], direct analysis of samples
through the combined use of LIBS and machine learning
algorithms [5], and the use of frozen samples or in-vacuum
detection [6].

In this work, we introduce a different experimental approach
for the LIBS technique that involves using a laser with a
controllable sequence of pulses to reduce the signal-to-noise
ratio, thus improving detection, coupled with principal
component analysis (PCA) and neural networks.

II. MATERIALS AND METHODS

Normal tissue and cancer samples were obtained from the US
Biolab Biorepository (Washington, D.C., United States). The
samples were prostate tissue microarrays (TMA) containing
cores with pathologically diagnosed adenocarcinoma and the
corresponding normal prostate tissue.

As shown in Fig. 1, each core was approximately 1.5 mm
in diameter and 2-5 µm in thickness. In each array, 16
adenocarcinoma cores and 10 normal prostate tissue cores
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were fixed with formalin on a microscope slide.

Figure 1. An illustration of the tissue microarray. C, Cancer samples; N,
healthy reference samples. Right panel: the magnified image of one sample
after being irradiated by several laser pulses.

III. LIBS EXPERIMENTAL SETUP

For the analysis, we used the “SLIT-LIBS” instrument supplied
by Onteko LLC (Olive Branch, Mississippi, United States),
which includes a laser that emits in a burst mode regime, as
described below. In this device, the laser beam was coupled
with the optical path of a slit-lamp microscope for better
visualization of the samples.

A schematic representation of this setup is shown in Fig. 2.
The pulsed (neodymium-doped yttrium aluminum garnet)
Nd:YAG laser emits at a wavelength of 1,064 nm while
working in a Q-switch regime, producing light pulses (shots)
with an energy of up to 40 mJ at a frequency of 1 Hz. A
low-power red laser was used to point where the Nd:YAG
laser would irradiate, ablate the sample, and generate the
plasma.

Each laser shot consisted of a train of up to three micro-pulses,
each having a duration of 8 ns and an interval around
25 µs between each pulse, resulting in an overall shot
duration of about 70-80 µs for the three-pulse train. The 2
mm in diameter laser beam was focalized using a 50 mm
focal length lens, which produced a 44 µm spot diameter
at the focal point. The laser ablation process induced the
emission of light, which was collected by an optical fiber and
delivered to a cross-Czerny-Turner spectrometer with a linear
charged-coupled device (CCD) as a detector. The spectral
resolution of the system was 0.3 nm, with a spectral range
of 250-800 nm. The total reading time of the spectrometer was
approximately 3.8 ms.

The use of a train of laser pulses instead of the typical
single-pulse regime to improve the signal-to-noise ratio in
LIBS has been reported in previous work [2]. The multi-pulse
can be achieved in two ways:

A) If there is enough temporal separation between each laser
pulse to avoid over-lapping with the plasma generated by the
previous pulse, then the detected emission will be the sum
of the plasma generated by the three pulses. To accomplish
this result, the pulses must be separated by several dozen
microseconds.

B) If the separation between pulses is just a few microseconds
long, each new pulse will be partially absorbed by the plasma
generated by the previous one. In this case, it is possible
to re-excite the plasma, leading to a higher intensity of the

spectral peaks and improved detection.

Figure 2. A schematic of the experimental setup: a) sample, b) laser beam,
c) detector, d) spectrometer, e) computer.

IV. EXPERIMENT DESCRIPTION

For the spectra collection, a tissue microarray slide was placed
over a platform located directly in front of the laser emission
source. Our instrument allowed visual observation of the
sample through a microscope with a magnification of up to
40X and collimation of the laser over the desired spot on the
sample using a micrometric xyz stage.

This setup allowed us to perform the spectral measurements
from several spots in each tissue core.

Once each core ran out of fresh available surface, we moved
on to the next. Fig. 3A shows a representative example of a
crater created as a result of the laser pulse. The crater shown
has a diameter of 154 µm and depth of 2.34 µm. The image
and crater profile were obtained with a Lext OLS5000 confocal
microscope from Olympus (Waltham, Massachusetts, USA).
The central part of the Gaussian beam also slightly ablated the
glass substrate in the center of the crater, as shown in the 3D
image in Fig. 3B.

To calculate the total mass extracted by the pulse, the geometry
of the crater was approximated as a cylinder with a diameter
of 150 µm and a depth of 2.3 µm. Then, for a prostate tissue
density of 0.98 g/mL [7], the ablated mass will be less than 41
ng per crater.

Assuming that a LIBS device is used as an alternative to a
traditional prostate biopsy analyzing 10 different areas and
taking 50 spectra in each area, the total extracted tissue would
amount to around 0.02 mg. This is considerably less than a
traditional biopsy, which typically requires close to 200 mg
of tissue [8]. This represents an important advantage when
considering LIBS as a potential technique for cancer biopsies.

In Fig. 3B, the orange lines show between which points it is
measured, while the dotted blue lines indicate the measured
values. For example, the blue dotted line above indicates 154
µm for the diameter of the crater. The vertical dotted blue line
located on the left indicates the depth of most of the crater
base, which is 2.34 µm. Finally, the blue dotted line on the far
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right indicates the maximum depth of the crater of 4 µm.

Figure 3. A) A representative 3D image of the laser crater. B) The depth
profile of the laser crater.

Each laser pulse generates plasma, and its emitted light is
captured through an optic fiber, which delivers it into a
USB400 spectrometer. In total, 400 spectra were captured, with
100 spectra for cancer tissue and 100 for normal tissue repeated
at 2 µs and 10 µs delays where the delay refers to the start of
the spectrometer reading with respect to the laser pulse. The
spectra shown in Fig. 4 (top panel) are the averages of each
group.

V. RESULTS AND DISCUSSION

Fig. 4 (top panel) shows the spectra of healthy and cancer
tissue samples captured with a 2 µs delay, as well as the
spectra resulting from the subtraction between the two. With
this delay setting, significant electronic background noise can
be observed. This came from the first two micropulses and
is contributing to the differentiation between normal and
cancer samples, possibly due to the differences in absorption
of the laser radiation between the plasma produced by
healthy and cancer tissue. Additionally, several elemental
peaks contributed to the difference, most notably Fe, Ca, and
Na.

Figure 4. Top panel: LIBS spectral for the difference spectra (blue) with a time
delay of 2 µs. Bottom panel: LIBS spectra for the differ-ence spectra (red) with
a time delay of 10 µs.

The spectra captured using a time delay of 10 µs (Fig. 4,
bottom panel) show characteristic lines that correspond to
plasma species whose lifetime must be longer than 10 µs.
For this case, we had no bremsstrahlung, as the spectrometer

started recording after the electronic background for the last
pulse had faded. In the difference spectra, several lines were
not distinguishable with a delay of 2 µs, probably because
some of the less intense lines were masked by the electronic
background.

As with the 2 µs spectra, the difference spectrum for the 10
µs time delay was obtained by subtracting the averages of
the normal and cancer spectra. It permitted us to intuitively
visualize which elements contributed to the differences
between the two groups.

A significant contribution to the ability to distinguish between
healthy and cancerous samples is Ca, whose doublet was
observed at 393.37 and 396.85 nm. The intensity of the Ca
peaks was stronger in the cancer samples.

Another strong contribution to differentiation was provided
by Na, whose peaks were observed at 589.0 nm and 589.6 nm.
Their intensities were weaker for the normal samples.

To explore the differences in the relative intensity between
elements in normal tissue and cancer samples, each
spectrum’s intensity was normalized by its highest value.

As observed in Fig. 4, the differences between the groups
were difficult to determine solely on the visual examination
of the spectra. Thus, chemometric methods were used to
classify the spectra. Principal component analysis (PCA) is
an unsupervised algorithm that has been successfully used to
analyze LIBS data [9]; it aims at combining and replacing the
original variables with a new, smaller set of features (principal
components) while losing as little information as possible.
PCA is commonly used to reduce the dimensions of the data.

This is especially useful with LIBS data, as each spectrum is
composed of thousands of intensity values. The PCA results
can be displayed using the scores, which are values describing
the variation in the samples for each principal component. The
scores for the two principal components that express most of
the variation in the data set are used for a scatter plot, which
gives a visual indication of whether the samples separate into
distinguishable clusters.

The PCA score plots for the data sets with 10 µs and 2 µs
delays are shown in Fig. 5. Although the samples tended
to group together, the data points for cancerous and normal
tissue did not separate into clearly discrete clusters and did not
permit clear visual discrimination; therefore, further analysis
was necessary to classify the samples.

Figure 5. Principal component analysis score plots for time delays of 2 µs
(left pabel) and 10 µs (right panel).

Neural networks have been used successfully as a
classification method for LIBS data in the past [10, 11]. In
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this case, a single-layer perceptron with three hidden nodes
was used, with the first 20 principal components from the
PC analysis as inputs. For validation purposes, a five-fold
methodology was used. This partitioned the dataset into five
equal sets and used one for validation, while the other four
were used to train the model. This procedure was repeated
for each of the five folds, and the model that resulted in the
best classification statistics was selected. JMP version 15 (SAS
Institute Inc. Cary, North Carolina, USA) was used to perform
all statistical analyses.

Table 1. Performance of the neural analysis model applied to the sets of LIBS
data with 2 µs and 10 µs delay. (RMSE: Root Mean Square Error)

Training set
2 µm delay 10 µm delay
R2 0.936 R2 0.260

RMSE 0.141 RMSE 0.445
Misclassification

Rate 0.018
Misclassification

Rate 0.268

Validation set
2 µm delay 10 µm delay
R2 0.971 R2 0.478

RMSE 0.099 RMSE 0.387
Misclassification

Rate 0.025
Misclassification

Rate 0.190

Some of the measures of fitness for the neural network models
are shown in Table 1. R2 is a correlation coefficient that
compares the fitness of the model to that of a constant model,
with a value of 1 for a perfect model. The R2 of 0.97 achieved
with a 2 µs delay indicates a good correlation between the
predicted values calculated by the model and the LIBS data
and is considerably higher than the 0.47 obtained with a 10
µs delay. The neural network model using a shorter delay
also shows a smaller root mean squared error (RMSE), which
translates into an overall lower misclassification rate.

VI. CONCLUSIONS

Detection using LIBS spectra with a time delay of 10 µs
allowed obtaining clean spectra with minimal electronic
background, similar to those reported in the literature.

Neural network analysis had a prediction rate of 0.732.
Using a time delay of 2 µs resulted in spectra containing
visible electronic background, which is usually undesirable
for spectral analysis. Nonetheless, in this case, the electronic

background seemed to offer an unexpected benefit for
the neural network’s classification accuracy, resulting in a
prediction rate of 0.975. These results require further inquiry
to unfold the underlying mechanisms, but if confirmed, they
could provide a useful approach when using LIBS for the
classification of complex biological samples.

All in all, we can say that LIBS, coupled with chemometric
and machine learning methods, has the potential to be
developed into a minimally invasive technique for prostate
cancer detection thanks to the negligible sample size required,
the immediacy of the analysis, and the relatively low cost of
the required equipment.
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