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The effect through which water pollutants initially floating in a lower
recipient, can appear at a higher vessel from which the liquid
falls down, is investigated. While is effect has been previously
studied experimentally for an inclined channel, here we develop a
theoretical model for the case of a vertically falling water beam. Two
cases are discussed, a simpler one, in which water flows vertically
through a cylindrical tube, and a more complex one, in which water
falls freely. For the first case, it is derived an expression for the
water flux above which the upward flow of particles stops. For the
second one, a relation between the water flux, the sizes of the
particles and the height along the water beam is obtained which
determines whether or not the particles can flow up to the higher
recipient. In the case of the free fall it follows that the rising of the
particles is only possible if the water surface tension is considered,
and only happens below a maximal height difference between the
two vessels.

Se investiga el efecto mediante el cual impurezas en agua flotando
en un recipiente inferior pueden aparecer en otro situado más
arriba y desde el cual el lı́quido cae hacia el primero. Un trabajo
experimental previo reportó este efecto para el caso en que el agua
fluye del recipiente superior al inferior a través de un canal abierto.
Aquı́ se complementa la discusión teórica por medio del estudio
de chorros de agua cayendo verticalmente. Se discuten dos casos,
uno más simple en que el agua fluye a través de un tubo cilı́ndrico
vertical, y otro más complejo en que el agua desciende en caı́da
libre. Para el primer caso, se deriva una expresión para el flujo de
agua que es capaz de detener el tránsito de partı́culas hacia arriba.
En el segundo caso se obtiene una relación entre el flujo de agua,
el tamaño de las partı́culas y la altura a lo largo del chorro, que
determina si las partı́culas suben o no hacia el recipiente superior.
Para la caı́da libre se concluye que la subida de las partı́culas es
posible solo si se considera la existencia de la tensión superficial,
y además por debajo de una diferencia de altura máxima entre las
vasijas.

PACS: Laminar flows (flujos laminares) 47.15.-x; Drops and bubbles (gotas y burbujas), 47.55.D-; Fluid dynamics (dinámica de fluidos),
47.00.00

I. INTRODUCTION

The present work is devoted to discuss the so called upstream
contamination effect. This phenomenon was detected when a
jet of water fell into a recipient in which with mate particles
were floating. Then, it was noticed that after a time lapse the
particles also appeared at the higher recipient. This effect was
observed in the year 2008 by a student at the Physics faculty,
University of Havana, and was systematically studied and
eventually published few years after in reference [1]. In that
work, a water reservoir located at a certain height discharged
clean water through an inclined channel on the surface of a
second reservoir located approximately 1 cm below. If mate
leaves or chalk particles were sprinkled in the surface of
the lower container, eventually the particles would reach the
upper container moving counter-stream along the channel.
At the lower end of the channel there was also a free falling
stream of water.

The experimental observations reported in that work, were
mainly explained by invoking the so called Marangoni effect
[2–7], which consists in the variation of the surface tension
of substances when floating contaminants are present. Then,
the gradient of the local density of surface contaminants was
assumed to create a net force pushing the particles against
the stream of water [1].

In this work we will present a complementary discussion
of the contamination effect, limited to the simpler case of
vertical falling beams of water. The objective is to consider
the feasibility of the effect to occur without the additional
influence of the Marangoni effect. That is, only the effects
of viscosity and surface tension will be under consideration.
Specifically, we will determine which conditions among the
parameters should be obeyed in order that spherical particles
can ascend through the water jet. The discussion will assume
that the particles move through the interior of the water
beam. The case in which the particle move through the
surface will not be analyzed here.

Two different situations will be investigated. In the first one,
the water falls down through a cylindrical tube of circular
section. In the second case the water is assumed to fall
freely under the action of gravity. In both cases the Stokes’s
frictional force associated to water viscosity plays a central
role. However, while for the first case the surface tension
plays no role, in the second one it becomes central.

In the first case, we are able to calculate the maximum flux
of water above which the particles stop moving upstream. In
the second case, we demonstrate that there is a maximum
height difference between the recipients above which the
particles are unable to flow upstream. This critical value
grows with the increasing of the size of the particle and with
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the reduction of the water flux. It follows that the numerical
values predicted for the critical height values (associated to
the water fluxes and sizes of the beam of free falling water
at the end of the inclined channel) are in the range of the
experimental estimates reported in reference [1].

The presentation of the work will be as follows. In Section
2 the relations among the parameters for the water to be
stopped to contaminate the higher recipient for the case
of water falling through a vertical tube, will be discussed.
In Section 3, we will consider the derivation of the similar
relation for the case of the free falling water beam. The
determination of an approximate stationary form of the beam
is also presented. Finally, the results are reviewed at the
Summary.

II. WATER FALLING THROUGH A CYLINDRICAL PIPE

Let us consider that the reference frame for coordinates will
be at the bottom of the upper recipient. The positive axis
for the z coordinate will point downwards and along the
symmetry axis of the water flow. Under this assumptions the
Bernoulli theorem will be applied between two points a and
b laying at different heights. Both points will be assumed to
lay on a curve being tangent to the velocity field. Then, it is
possible to write

1
2
ρ v2

a − ρ g za + Pa =
1
2
ρ vb

2
− ρ g zb + Pb. (1)

In the following this relation will be employed to discuss the
two types of water flows under consideration. Assuming that
the index a = 0 and the b is the z-coordinate, the Bernoulli
Law can be written as
1
2
ρv2

0 + P0 =
1
2
ρ v(z)2

− ρg z + P(z),

1
2
ρv2

0 =
1
2
ρ v(z)2

− ρ g z + (P(z) − P0),

where v0, vz are the flow velocities at the two points and P0,
Pz the corresponding pressures.

But, for the case under consideration in this section, the
transversal area of the cylinder is constant at different heights.
Therefore, the incompressibility of water determines that the
velocity v(z) is in fact not changing with z, i.e.

v(z) = v0 ≡ v. (2)

Thus, it also follows that the distribution of pressures along
the vertical inside the tube is identical to the one in static
water, thus

P(z) − P0 = ρ g z. (3)

Now, let us write the Newton equation of motion for a small
spherical particle of radius R and density ρm located inside
the water beam, as

ρm V
dvm(t)

dt
= ρmV g + fe − k (vm(t) − v), (4)

m = ρm V, (5)

V =
4
3
πR3, (6)

which expresses that the acceleration is determined by the
vector addition of the weight of the body, the floating forces
produced by the pressure and the viscosity force defined
by the Stoke’s law. But, Archimedes Law turns out to be
exactly valid for the floating force, due to the linear behavior
of the pressure coinciding with the functional dependence
of pressure with vertical distance for static water. Thus the
floating force is given by

fe = −V
dP(z)

dz
= −ρ g V, (7)

where the negative sign is because the force tend to move
the body in the negative direction of the height coordinate z.
Then, the Newton equation can be rewritten in the form

dvm(t)
dt

= g (1 −
ρ

ρm
) −

k
m

(vm(t) − v). (8)

This equation includes the frictional Stokes force acting on
a moving sphere in a fluid when the liquid movement is
laminar

fS = − k (vm(t) − v), (9)

where the constant k is given in terms of the viscosity constant
µ and the radius of the sphere as

k = 6 πµ R. (10)

This is a simple first order equation for the velocity of the
particle in the observer’s reference frame. Expressing it in
the integral form, we can write

v(t)∫
0

dvm

(vm(t) − v) +
m g

k ( ρρm
− 1)

= −

t∫
0

k
m

dt,

log [
vm(t) − v +

m g
k ( ρρm

− 1)

−v +
m g

k ( ρρm
− 1)

] = −
k
m

t. (11)

This relation allows to write the following explicit solution
for the velocity of the particle

vm(t) = [v −
m g

k
(
ρ

ρm
− 1)](1 − exp(−

k
m

t)), (12)

which after being evaluated for large times, yields the
following expression for the limit velocity of the particle with
respect to the observer’s frame

vm(∞) = [v −
m g

k
(
ρ

ρm
− 1)] (13)

= v −
2πR2g ρm

9 πµ
(
ρ

ρm
− 1).

In the above relations it has been substituted

m
k

=
2πR2ρm

9 πµ
. (14)
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Therefore, the single condition for the particles not to be
allowed to climb to the upper reservoir is

v −
2πR2g
9 πµ

(ρ − ρm) > 0.

But, the velocity is defined in terms of the volume flux of
water Q and the area A of the vertical cylinder as v = Q

A .
Thus, the inequality becomes

Q >
2πR2gA

9 πµ
(ρ − ρm). (15)

This relation indicates that if Q stops all the particles
regardless the value of their density ρm, the following
modified relation should be satisfied

Q >
2πR2gAρ

9 πµ
. (16)

Let us now assume that the fluid is water and that the
experience is performed under normal gravity conditions.
Then, the following set of parameters can be substituted
ρ = 1000 Kg/m3, g = 9.8 m/s2, µ = 8.9 × 10−4 Ns/m2.

We now illustrate the resulting regions of values of the flux
of water Q , the radius R of the spherical particles and
the area A of the water conducting cylinder, for which the
particles are not allowed (or allowed) to climb upstream
along the cylinder. These regions are shown in figure 1. The
surface shown defines the critical boundary in the space of
parameters at which the particles are in the limit of being
allowed and not being allowed to contaminate the upper
recipient. The colored zone over the surface is the set of values
of triplets of coordinates (Q,R,A) for which the particles can
move against the flow up to the higher recipient. On the
contrary, the white region below the surface represent the
triplets of parameters for which the particles remain trapped
in the lower vessel.

Figure 1. The plotted surface contains the set of points satisfying the
equality in relation (16) as a function of R, A and Q. That is, at such points
the velocity of the particles vanishes. Below the surface the particles have
positive velocities and then do not contaminate the upper recipient. Above
it, in the colored region, the particles tend to ascend against the flow.

Let us use the above derived relation to estimate the critical
value of the flux for particles with size of the chalk powder
used in reference [1]. Since the authors estimate it as of the
order of hundreds of microns, we will assume a radius of
the spherical particles of R = 100 µm = 0.0001 m. The flux of
water falling from the upper to lower recipients was chosen
as Q = 16 cm3 /s=0.000016 m3/s. For these values of the size
of the particle and the flux of water, the point laying on the
critical surface has a value of the sectional area of the cylinder
given by A = 0.000163469 m2 = 1.63 cm2.

This result indicates that for the flux of water employed
in the experiment in reference [1] and a size of the chalk
particle powder of the estimated one in that reference, the
area of the cylinder section considered in our model is
of the order of a few cm2. But, the sectional area of the
waterfall at the end of the inclined channel employed in the
experiments is expected to be of the same order. Therefore,
it can be concluded that floating effects alone, without the
consideration of the Marangoni effect can, partially justify the
contamination against current effect through the waterfall at
the end of the channel, at least for particles which are able to
float.

We would like here to remark on a question that looks
of interest in connection with the experiments reported
in reference [1]. It should be underlined that the viscous
character of water is expected to establish a zero velocity
of the water relative to the channel when they meet. This
situation suggests that the contact boundary of water with
the walls of the channel should be expected to be a preferred
path for the moving of the particles upwards. Therefore, it
seem necessary to compare the dimensions of the particles
with the sizes of the boundary layer in which the velocity
varies from zero at the wall up to its maximum value at the
center of the channel.

III. FREE FALLING WATER FLOW

Let us now consider the second situation in which the
water free falls in a beam to the lower recipient. Firstly, we
will determine the pressure difference between two points:
one in the air just over the water surface, and one just
underneath the surface. Then, we will consider the balance
of momentum of the surface element illustrated in figure
2. The picture illustrates the two principal curvature radii
Rin and Rout of the chosen symmetric surface element, and
also the surface tension forces which are mainly exerted
on the two arcs of circle corresponding to the respective
two circumferences defining the curvature radii. The surface
tension parameter is represented byγ. Therefore, considering
that the two arc elements are infinitesimal with equal length
dl, the momentum balance for the surface element gives

(Pin − Pout) dl 2 = γ dl (dθin − dθout).

= γ dl 2(
1

Rin
−

1
Rout

), (17)

dθin =
dl

Rin
, dθout =

dl
Rout

. (18)
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Now, in order to simplify the discussion, let us assume that
water beam shows curvature radii satisfying

Rout >> Rin. (19)

This relation indicates that the tangent vector to the water
surface contained in a plane including the axis of the
beam, becomes close in direction with the beam axis. But,
this property in turns implies that the small radius is
approximately given by the radius of the beam taken at the
fixed height value defined by the z coordinate. This radius
will be defined by r(z). Thus,

Pin − Pout =
γ

r(z)
. (20)

Figure 2. A model of the water beam that includes a surface element for
which the momentum balance is worked out. The internal and external
principal curvature radii are indicated. The surface element is colored in
yellow and the surface tension forces acting on it are shown in the figure
depicted at right.

But, the external pressure on the beam is given by the
atmospheric one P0, which implies the following relation
between the internal pressure at any height z the formula

P(z) = P0 +
γ

r(z)
. (21)

Consider now at the origin of the height coordinates z = 0,
the following initial conditions: the speed of the fluid when
emerging form the upper recipient is v(0) = v0 and the radius
of the beam is r(0) = a. Then, substituting in the Bernoulli’s
equation, it follows

1
2
ρv2

0 + P0 +
γ

a
=

1
2
ρ v(z)2

− ρg z + P0 +
γ

r(z)
, (22)

1
2
ρv2

0 +
γ

a
=

1
2
ρ v(z)2

− ρ g z +
γ

r(z)
, (23)

from which the velocity can be expressed in the form

v(z)2 = v2
0 + 2 g z +

2 γ
ρ a
−

2 γ
ρ r(z)

.

Let us consider now a special origin for measuring the height
coordinate z. Note first that if we assume the velocity v0 of
the flux is tending to zero in (23), the constancy of the total
flux of water Q = πa2v0 implies that the radius of the beam
a should tend to infinity. Therefore, if we consider this point
as the origin of coordinates z = 0, relation (23) becomes

ρ g z =
1
2
ρ Q2

π r(z)4 +
γ

r(z)
. (24)

But, the unique real and positive solution of this equation
gives for r(Q, z) (after fixing the density, surface tension and
viscosity associated to water) is plotted in figure (3) as a
function of the flux and the height z (as measured from the
point at which the velocity of water vanishes). Note that this
chosen origin of values of z is an unphysical point of the curve
r(z), since the section of a real beam never tends to infinity.

Figure 3. Radius of the free falling water beam as a function of the height
coordinate z and the water flux Q passing through the beam.

The above discussion in this section, describing the flow of
water regime in the falling beam, mainly follows the one
given in reference [8]. It was presented for completeness.

Let us now consider how a particle situated in the water beam
moves. The forces acting on this particle are determined by
the variation of the pressure with the height, the weight of the
particles and the viscosity. The viscosity force is proportional
to the relative speed between the liquid and the particles
(Stokes Law). Then, the Newton equation of motion takes
the following form:

ρm V
d2z
dt2 = ρmV g − k (

dz
dt
− v(z)) − V

dP(z)
dz

, (25)

m = ρm V, (26)

which is very similar to relation (4) in the previous section
with the only difference that the expression for the pressure
as a function of the height z is different here. In this equation
dz
dt = vm(t) is the speed of the particle relative to the observer
and ρ,V (as in the previous subsection) the density and
the volume of the floating particle, respectively. But, the
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derivative of the pressure in (21) can be expressed in terms
of d r(z)

dz , which in turns can be written as a function of r(z) by
taking the derivative of the relation (24). Using the result
of this evaluation, the floating force (equal to minus the
derivative of the pressure respect to the height z times the
volume) can be calculated as

fe = −V
dP(z)

dz

= −m g
ρ

ρm

γ r(z)3

2ρ Q2

π + γ r(z)3
. (27)

This result for the floating force deserves a comment. Note
that by discarding the viscosity, the only force pointing in
the -z (that is pushing the particle to the upper recipient) is
this floating force that completely disappears if the surface
tension vanishes. This allows to conclude that, in the here
considered free falling case, the surface tension is a central
element for the possibility of contamination of the upper
recipient by particles coming from the lower one.

Then, by dividing the Newton equation by the mass of the
particle m = ρm V , it is possible to write

d2z
dt2 = (g −

9πµ
2πρmR2 (

dz
dt
− v(z)) −

g
ρ

ρm

γ r(z)3

2ρ Q2

π + γ r(z)3
), (28)

in which all the entering parameters are already well
defined. We will consider now the restrictions implied by
this equation on the values these parameters for allowing or
not the transportation of particles from the lower recipient
to the upper one. A drastic simplification for the derivation
of these conditions follows after noting that the term in the
equation pushing the particles down is a constant equal to g.
Thus, when density ρm tends to zero we have the situation in
which there is a maximal tendency to move up. That is the
limit in which the particle is an empty bubble.

In this limit the equation reduces to the simpler form

0 =
9πµ
2πR2 (

dz
dt
− v(z)) + gρ

γ r(z)3

2ρ Q2

π + γ r(z)3
, (29)

from which the velocity of the particle at any point can be
expressed in terms of the already known magnitudes of the
problem as

dz
dt

= v(z) −
2R2gρ

9µ
γ r(z)3

2ρ Q2

π + γ r(z)3
. (30)

Therefore, the condition for the particle to move up at a height
value z can be written as

dz
dt

= v(z) −
2R2gρ

9µ
γ r(z)3

2ρ Q2

π + γ r(z)3

=
Q

πr(z)2 −
2R2gρ

9µ
γ r(z)3

2ρ Q2

π + γ r(z)3
< 0. (31)

Assuming that the fluid under consideration is water, the
above conditions are equivalent to

C(Q,R, z) = Q −
2πR2gρ

9µ
γ r(z)5

2ρ Q2

π + γ r(z)3
< 0. (32)

Figure 4. The plotted surfa9ce is formed by the set of points satisfying the
equality in relation (32). That is, at such points the velocity of the bubble
particles vanishes when the triplet of parameters take the plotted values.
Above the surface the particles have positive velocities and then do not
contaminate the upper recipient. Below it, in the colored region, the particles
have negative velocities and then, tend to ascend against the flow.

Figure 5. The plotted curves illustrate that when the flux is smaller, and
such that the triplet of parameters (Q, z,R) is below the critical surface, the
motion of the particle is towards negative values of z. That is, the particle
ascends to the upper reservoir. For higher values of flux (for which the triplet
of parameters is over the critical surface) the particle moves in the direction
of the positive values of z. Thus, in this case the particle moves down and
does not tend to contaminate the upper container.

The satisfaction of the relation (32) in the space of the three
still free parameters: the flux Q, the radius of the particles
R and the height coordinate z (measured from the point of
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zero velocity) is illustrated in figure 4. The shown surface
describes the triplets of values of the parameters (Q,R, z)
at which the velocity of the particle becomes equal to zero.
For all the points being over this surface the particle shows
a positive value of its velocity and then it is not able to
climb to the upper reservoir (remember that the increments
of the height z are defined as positive ones if the point
moves down). Correspondingly, the points being below the
surface correspond to particles that will contaminate the
upper vessel. That is, having a negative velocity value. In
this way, given the parameters of the system, the conditions
for the particle to appear in the upper recipient have been
identified also for this free falling water situation. In the
next subsection we will check how the direct solution of the
exact system of equations reproduces the same conclusions
extracted from the simplified analysis for a spherical bubble
of the same radius as a particle with density ρm.

III.1. Direct solution of the full Newton equation around the
critical surface

Let us consider the Newton equation

d2z
dt2 = g −

9πµ
2πρmR2 (

dz
dt
− v(z)) − g

ρ

ρm

γ r(z)3

2ρ Q2

π + γ r(z)3
, (33)

for values of the triplet of parameters (Q,R, z) being close
to the critical surface in figure 4. For concreteness, it will be
assumed the following specific values for the height position
and the radius of the particle

z(0) = 0.1 m, R = 0.004 m, (34)

by also selecting two values of the flux

Q1 = 1.4 × 10−6 m3/s Q2 = 1.6 × 10−6 m3/s, (35)

being close to an specific value Q∗ = 1, 53×10−6. This value Q∗

is chosen for making sure that the triplet (Q∗,R, z(0)) is exactly
on the critical surface. Then, the two triplets associated to the
fluxes Q1 and Q2 are situated, one of them over and the other
below, the critical surface.

Now, it will be considered the solution of the equations (33)
by assuming that the density of the particle is very small, by
example satisfying

ρm

ρ
= 10−9.

In addition, we will assume two independent boundary
condition for the velocity of the particles as coinciding at
the initial time t = 0 with the velocities of the water flow in
the form

d
dt

z(t)t=0 =
·

z(0) =
Q

πr(z(0))2 ,

as calculated for the two specified values of the flux: one of
them associated to a higher value and defining a point over
the critical surface and the other one with a smaller flux,

which is linked with a point being below the critical surface.
The specific values of the two fluxes were defined in (35).

The solutions of the equation of motion for the height
coordinate z of the particle are shown in figure 5. The curves
clearly show that when the flux is the smaller one, and such
that the tripelet of parameters is below the critical surface,
the movement of the particle is tending to the negative values
of z. That is, the motion is ascending to the upper reservoir.
However, for the higher flux, when the triplet of parameters
is over the critical surface, the particle moves in the direction
of the positive values of z. Thus, in this case it does not tend
to contaminate the upper vessel.

IV. SUMMARY

We have theoretically modeled the effect associated to
the rising of particles from a lower recipient to a higher
one, through a water flux falling from the higher one [1].
Conditions for the occurrence of the effect for two types of
mechanisms for the water falling were established. It follows
that for water going down through a cylindrical tube of
constant cross section, there is a critical value of the flux
were above which the particles are not allowed to rise up
to the upper recipient. For the case in which the water is
free falling, it firstly became clear that the possibility of the
particles to climb up exists only under the presence of surface
tension in water. If the surface forces are assumed to be
absent, the particles can not flow up, at least for the discussed
case of particle motion through the volume. In this case, it
also follows that there is a critical value of the difference of
height between the vessels, above which the particles are
not allowed to climb the water flow. These critical values
rise with the increasing size of the particles and decrease as
the amount of water flux through the falling beam is reduced.
The discussion results in a simple criterion for the occurrence
of the effect which is based on a simplified equation of motion
for empty bubbles of the same sizes as the particles. The
almost vanishing of the density of the bubbles permits to
reduce the equation of motion to a first order in the time
derivative one, in the limit of zero density. The satisfaction
of the criterion for the occurrence of the effect obtained for
bubbles is checked by solving the full Newton equations of
motion for particles near the critical surface, under simplified
conditions.
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