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D. Beniteza, H. J. Herrera Suárezb
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In this paper we review the system made up by two blocks
connected by a string over a smooth pulley with variable tension.
One block lies on an horizontal surface and the another block is
hanging vertically. We carry out a complete and systematic analysis
for the tension of the string as function of the angle θ and the
horizontal distance x, at static equilibrium. We find a simmetry-like
that corresponds to two different configurations with the same
tension and obtain the relationship that must satisfy two angles or
two horizontal distances to obtain equal tension.

En este artı́culo revisamos el sistema conformado por dos bloques
conectados por una cuerda sobre una polea sin fricción con
tensión variable. Un bloque se encuentra sobre una superficie
horizontal y el otro está suspendido verticalmente. Realizamos
un análisis completo y sistemático para la tensión de la cuerda
en función del ángulo θ y la distancia horizontal x, en equilibrio
estático. Encontramos un tipo de simetrı́a que corresponde a
dos configuraciones diferentes con la misma tensión y obtuvimos
la relación que deben satisfacer dos ángulos o dos distancias
horizontales para obtener igual tensión.

PACS: Newtonian mechanics (mecánica newtoniana), 45.20.D; Tension measurement (medición de tensión), 07.10.Lw; Mechanical
instrument equipment (equipo de instrumento mecánico), 07.10.-h.

I. INTRODUCTION

In this work we re-examine the system of two blocks of
masses m and M connected by a string over a smooth pulley,
at static equilibrium. The string is extensionless, uniform and
its mass is negligible, and there is a coefficient of static friction
between the mass m and the horizontal surface. In Figure 1
we show the forces acting on this problem.

Figura 1. Two blocks tied to an extensionless rope. The mass of the string
is negligible.

This system and similar versions are considered in

fundamental physics textbooks [1–5], in some papers [6–10]
and the website of A. Franco [11]. However, a complete
analysis about the tension T in function of the angle θ or
the horizontal distance x has not been considered in the
literature.

The mentioned problem is important because the tension T
and the normal force N are not constant, unlike what happens
in the following systems: the Atwood’s machine, a mass on
an horizontal surface and the another mass suspended, a
mass on an inclined plane and the another mass hanged, and
two masses on two inclined planes.

The purpose of this work is to perform a complete analysis
on the tension of the string, T, which is provided by the
hanging mass M when the system is at static equilibrium, as
function of the angle θ and the horizontal distance x, using
trigonometric functions and elementary mathematical tools.

The paper is organized as follows. In section II we show
the experiment arrangement built by us to model the system
shown in Figure 1; in section III we present the theoretical
analysis and the conclusions are given in section IV.

II. THE EXPERIMENT

Considering that only the reference [9] performed the
experimental arrangement and took experimental data,
corresponding to the system showed in Figure 1, and
assuming that it is important because it articulates theory
and experiment, we also carry out another arrangement.
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We show, in Figure 2, the experimental arrangement used
for obtaining the tension T in function of the angle θ. We
use the linear air track, reference 337501, of the company
Leybold [12]. We take m = 1.3745 kg and M = 0.4 kg, and
put a digital dynamometer [13] over the mass m and the
direction of the rope to measure the tension T. The mass of
the dynamometer has been added to m. The angle θ was
measured with the Angle Meter PRO+ free application of
Play Store [14].

We obtained that the static friction coefficient between the
mass m and the surface is µs = M

m = 0.29. We show
in Figure 3 our experimental results for the tension T in
function of the angleθ, considering several static equilibrium
configurations. The estimated errors in the measurements of
the angle θ and the masses are 10 and 1 gr, respectively. The
uncertainty of the tension T is obtained in quadrature:

dT =

√(
∂T
∂θ

)2

(dθ)2 +

(
∂T
∂M

)2

(dM)2 +

(
∂T
∂m

)2

(dm)2

, given approximately ∆T = 0.02N. In the next section we
present the theoretical analysis about this figure.

Figura 2. Experimental arrangement: (a) the linear air track; (b) the
dynamometer

III. THEORETICAL ANALYSIS

Applying the Newton’s second law to the mass m and
assuming that the system is at static equilibrium, the tension
of the string, T, in function the angleθ is given by [1,2,6–9,11]

T (θ) =
µsmg

cosθ + µs sinθ
, (1)

where µs is the coefficient of static friction, g is the gravity
acceleration and θ is in the range [0, π/2].The theoretical
curve shown in Figure 3 was made with this equation. We
can see that the experimental data agree, approximately, with
the theoretical prediction.

The minimum value of this tension is reached when

θmin = tan−1(µs).

This relation can be associated, in a pedagogical way, with
the right triangle shown in Figure 5. By means of this figure
it is easy to obtain Tmin = T(θmin) =

µsmg
√

1+µ2
s

.

We display, in Figure 4, the tension T(θ) given by equation
1, with m = 2kg and µs = 0.9. In this Figure it is possible to

identify two extreme cases: (1) When the string is parallel to the
horizontal surface. In this case, θ→ 0, then lı́m

θ→0
T (θ) = µsgm;

(2) When θ → π/2, then lı́m
θ→ π

2

T (θ) = mg. In this situation

the rope is perpendicular to the horizontal surface and
corresponds to the Atwood’s machine at rest or at uniform
motion.

Figura 3. Experimental results for the tension T in function of Θ
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Figura 4. Tension T in function of the angle θ, with m = 2 kg, y = 0.3 m and
µs = 0.9.

III.1. T as function of angle

Let us consider an arbitrary tension T = T1 and draw a
parallel line to the horizontal axis at height T1 in Figure 4.
Clearly, we see that there are two angles (θ1 and θ2) for which
the same tension is obtained . It means that for each selected
angleθ1 there is another angleθ2 that T(θ1) = T(θ2), i.e., there
are two identical configurations for the static equilibrium (see
Figure 6), indicating certain type of symmetry in the system.
One of the aims of this note is to find the restriction that these
angles must follow. From equation 1, we obtained

µsmg
cosθ1 + µs sinθ1

=
µsmg

cosθ2 + µs sinθ2
. (2)
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Making a simple algebraic manipulation, we get

µs =
cosθ1 − cosθ2

(sinθ2 − sinθ1)
, (3)

Figura 5. Right triangle associated to the relation tan(θmin) = µs

and using the well known trigonometric identities,

cos A − cos B = −2 sin
(A + B

2

)
sin

(A − B
2

)
, (4)

sin A − sin B = 2 cos
(A + B

2

)
sin

(A − B
2

)
, (5)

we can rewrite the equation 3 as,

µs =
−2 sin

(
θ1+θ2

2

)
sin

(
θ1−θ2

2

)
−2 cos

(
θ1+θ2

2

)
sin

(
θ1−θ2

2

) ,
µs = tan

(
θ1 + θ2

2

)
, (6)

finally getting

θ2 + θ1 = 2 tan−1 (
µs

)
. (7)

or equivalently

θ2 + θ1 = 2θmin. (8)

Figura 6. Configurations for the static equilibrium.

This equation establishes the relationship between the angles
θ1 and θ2 that give the same tension. It provides us certain
type of symmetry in this system.

III.2. T as function of x

It is also possible analyze the tension T in function of the
horizontal distance x. For that, we use the following relations

cosθ =
x√

x2 + y2
, (9)

sinθ =
y√

x2 + y2
, (10)

in the equation (1) and obtained

T (x) =
µsgm

√
x2 + y2

x + yµs
. (11)

A graph of this equation is plotted in Figure 7.

Again, if we draw a parallel line to the horizontal axis at
height T2 we see that there are two different positions x1
and x2 that yield T(x1) = T(x2) i.e., there are two similar
configurations of static equilibrium (see Figure 7). The
minimum value for T is obtained when xmin =

y
µs

. In this

situation is obtained Tmin = T(xmin) =
µsmg
√

1+µ2
s

.

Thus, T(xmin) = T(θmin).

On the other hand, we can find the two extreme cases
considered in the previous subsection: (i) We obtained that
lı́m
x→0

T (x) = mg. This result is equivalent to lı́m
θ→ π

2

T (θ); (ii)

Furthermore lı́m
x→∞

T (x) = µsmg. This situation agrees with

lı́m
θ→0

T (θ).

Now we are going to find the condition that must satisfy the
horizontal positions x1 and x2 that yield T(x1) = T(x2). We
obtain this relation in three different forms:

First: From equation 11 is obtained

(
T2
− g2m2µ2

s

)
x2 + 2T2yµsx +

(
T2
− g2m2

)
y2µ2

s = 0, (12)

Resolving this quadratic equation in x, we get

x1 =
−T2yµs + gmyµs

√
T2µ2

s + T2 − g2m2µ2
s

T2 − g2m2µ2
s

(13)

x2 =
−T2yµs − gmyµs

√
T2µ2

s + T2 − g2m2µ2
s

T2 − g2m2µ2
s

. (14)
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Figura 7. Tension T as function of x, with m = 2 kg, y = 0.3 m and
µs = 0.9.

The sum of these roots is

x1 + x2 =
2T2yµs

g2m2µ2
s − T2

. (15)

From this equation, x2 can be obtained knowing x1, the
tension T, the coefficient of static friction µs and the
vertical distance y.

Second: From Figure 6 we can build Figure 8 and after
applying the Law of Sines to obtain:

sinθ1√
x2

2 + y2
=

sinθ2√
x2

1 + y2
, (16)

or

x2
1 sin2 θ1 − x2

2 sin2 θ2 = y2
(
sin2 θ2 − sin2 θ1

)
. (17)

Figura 8. Reinterpretation of Figure 6.

Using the trigonometric identity sin2 (A) − sin2 (B) =
sin (A + B) sin (A − B), it is obtained

x2
1 sin2 θ1−x2

2 sin2 θ2 = y2 sin (θ1 + θ2) sin (θ1 − θ2) (18)

or

x2
1 sin2 θ1 − x2

2 sin2 θ2 = y2 sin (2θmı́n) sin (θ1 − θ2) . (19)

From this equation, we can obtained x2 knowing x1 and
the angles θmin and θ1.

Third: If x2 = kx1, k ∈ <+: using tanθ1 =
y
x1

, tanθ2 =
y
x2

in the trigonometric identity

tan (θ1 + θ2) =
tanθ1 + tanθ2

1 − tanθ1 tanθ2
, (20)

the following quadratic equation in x1 is obtained:

k tan (2θmin) x2
1 − y (k + 1) x1 − y2 tan (2θmin) = 0,

which has the physical solution

x1 = y


(k + 1) +

√
(k + 1)2 + 4k tan2 (2θmin)

2k tan (2θmin)

 . (21)

From this equation, it can be obtained x1 for a given k and
knowing the vertical distance y and the θmin angle.

IV. CONCLUSIONS

We examined the static equilibrium problem of a block of
mass m on a plane being pulled at an angle θ with the
horizontal by a tension due to a suspended mass M from
a pulley. We performed a complete analysis to the expression
for the tension of the string, T, when the system is at static
equilibrium. We found two different configurations with
equal tension showing certain kind of symmetry, and showed
that there are two extreme cases that can be related with
the Atwood’s machine and the system conformed by one
mass on an horizontal surface connected with another mass
suspended vertically from a pulley.

First, we analyzed the tension T in function of the angle
θ. We found (except for θmin= tan−1 (

µs
)
, where µs is the

coefficient of static friction) that for each angle θ1 there
is another configuration of static equilibrium given by the
angle θ2 so that T(θ1) = T(θ2) with the condition θ1 + θ2 =
2tan−1µs = 2θmin. Second, we analyzed, in a similar way, the
tension T in function of the horizontal distance x. Again, we
obtained that there are two horizontal distances x1 and x2
that give a configuration of the static equilibrium such that
T(x1) = T(x2). The condition that must satisfy x1 and x2 is
given, in three different forms, by means of the equations 15
and (21). According to our knowledge, these results have not
yet been published.

Additionally, we did a nice laboratory exercise in order to
check experimentally the equation 1. The analysis carried
out in this work is an important didactic tool that allows
to articulate physics and mathematics, and theory with
experiment, contributing to improve the learning of physics.

In this work we used simple and elementary mathematical
tools as trigonometric identities and minima of a function, the
free software Geogebra and the computer program Origin.
Our results can be incorporated as additional questions
to this problem in fundamental physics textbooks and
introductory-level physics courses, and may help teachers to
produce meaningful learning when teaching required, at the
same time, the application of both trigonometric and statics.
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