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The great complexity of the human connectome motivates the study
of a simpler neural network. For that purpose, the Ising Model
was applied on experimental data on the synaptic connectivity
of Caenorhabditis elegans (C. elegans) in resting-state, assigning
a binary variable (representing active or inactive states) to each
neuron in the network. The dynamics of this system is postulated
as a message passing network, encoded by the Belief Propagation
algorithm (BP) in its criticality region. The inferences of neuronal
activity maps were obtained for different times of the nematode’s
life cycle. We determined the network susceptibilities as a measure
of correlations in the system through the Susceptibility Propagation
algorithm (SP). Finally, we applied clustering methods to obtain
functional clusters and analyze similarities between them and the
real functional clusters (sensory, interneurons and motor). All this
contributed to the analysis of structure-function relationship in the C.
elegans neural network.

La gran complejidad del cerebro humano incentiva el estudio de
una red neuronal mucho mas simple. Para eso, se aplicé el modelo
de Ising sobre datos experimentales de la conectividad sinaptica
del Caenorhabditis elegans en estado de reposo, asignandole
a cada neurona de la red un comportamiento binario (activo o
inactivo). La dinamica de este sistema se postula como una red de
transmision de mensajes dada por el algoritmo Belief Propagation
(BP) en su regién de criticalidad. Se obtuvieron mapas de inferencia
de actividad neuronal para diferentes tiempos del ciclo de vida
del nematodo. Ademas, determinamos las susceptibilidades de la
red como medida de las correlaciones del sistema a través del
algoritmo Susceptibility Propagation (SP). Finalmente, aplicamos
métodos de clustering para inferir médulos funcionales en la red y
analizar semejanzas entre estos y los médulos funcionales reales
(sensoriales, inter-neuronas y motores). Todo esto contribuy6 al
andlisis de la relacion estructura-funcién en la red neuronal del C.
elegans.

PACS: Neural networks (redes reurales), 87.18.Sn; Criticality of glass transitions (Criticalidad en transiciones vitreas), 64.70.qj; Ising model
(Modelo de Ising), 05.50.+q; Biological complexity (Complejidad biol6gica), 87.18.-h.

I. INTRODUCTION

C. elegans is a small and transparent nematode worm;
just under a millimeter long [1,2]. Thanks to its simplicity
(959 cells, 302 of which are neurons) and its simultaneous
complexity (it shares many systems and structures with
other complex animals) [3], C. elegans has become one of
the most used models in neurobiology. Each neuron of the
nematode has a specific function assigned [4] and the synaptic
connectivity network between these neurons is already known

[5].

With this information several studies have attempted to model
the neural activity of C. elegans, including approaches based
on differential equations, agent-based models, and machine
learning techniques [6, 7]. However, they often suffer from
limitations such as: high computational complexity, difficulty
in parameter tuning, and lack of interpretability. In this
paper, we propose a novel approach to modeling the neural
activity of C. elegans using message passing algorithms.
Message passing algorithms are a class of algorithms that
allow for efficient computation on graph structures, making
them well-suited for modeling neural networks.

Our approach starts defining, from the synaptic connectivity
matrix, a graph representation of the C. elegans neural
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network and applying message passing algorithms to
simulate the activity of the network as a whole. In practice,
we use in the vicinity of the critical point the message passing
algorithm, Belief Propagation (BP) to quantify the activity
of each neuron in the different phases of the organism’s
development. We also compute the response function
between the different nodes in the network (susceptibilities)
using another message passing technique, Susceptibility
Propagation [8], as in reference [9]. Finally, we show that the
information povided by this response function is a good proxy
to classify the functionaly of the neurons [10].

II. METHODS

C elegans

Current experimental data about the nematode’s neurvous
system contains information on the births times and spatial
coordinates of the 279 neurons. Moreover, it also provides
the synaptic connections weights (directed links) assigned
to every neural pair [5]. This information is enough to
generate direct graphs or networks, at different moments of
the evolution of the nematode, where the vertices are the C.
elegans neurons and the links are encoded by its synaptic
connectivity matrix J.
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For example, Fig. 1 is a representation of the actual positions
of all the neurons scattered throughout the body of the
nematode in its adult state. These neurons are identified by
colours, assigned according to the functions they perform in
the system. Sensory neurons are shown in red, inter neurons
in yellow and motor neurons in blue.

Neurons appear at different times during the whole
development of the nematode. This is represented in Fig.
2. There we see that neurons are born mainly in two time
stages: one, very short, called embryonic burst; and a larval
or embryonic phase larger than the first, that starts with
the hatching (840 minutes) and finishes when the nematode
becomes an adult worm. As can be seen in the graph, after
hatching there is a time interval where neuronal growth stops.
This could correspond to a laboratory-induced hibernation
phase, where the nematode is able to freeze its metabolic

processes.
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Figure 1. Red-sensory, yellow-inter-neurons, blue-motor. Functional

classification of the C. elegans neurons according to experimental data for
the nematode in its adult state.
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Figure 2. Neurons births during the developmental cycle of C. elegans

Notice moreover, that while we have access to the connectivity
matrix in the late stage of development of the nematode, this
information is not present during the growth of C. elegans.
Therefore, in what follows we asume that once two neurons
are present at time f, they are connected with the same
connectivity strenght that the adulthood of the worm. This
is a strong assumption during the nematode’s development.

The model

To model the dynamic activity of the C. elegans neural
network we map it to a binary system of interacting variables
in the spirit of the Ising model [9,11,12]. Variables have two
possible values s;e{1, -1} attributed to the electrical activity
for each neuron (node) 7 of the structural network [9, 10, 13].
In practice, s; = 1 means that the neuron is “on” or activated
and s; = —1 implies that the neuron is "off” or inactivated.
Moreover, every pair of nodes (i, j) interacts with intensity J;;,
encoded by the synaptic connectivity matrix [5].
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In short, for a specific configuration {s;};-1,_,79 the interaction
occurs according to an energy function:

Hisi} = _Z]ijsisj - zhiSi

i<j i

1)

where in general /; is the external field on the i spin and
represents the presence of an external stimulus. However,
in the rest of this work h; is set to zero, mimicking the
neural activity in the absence of external stimuli. To solve
this problem numerically we use Belief Propagation and
Susceptibility Propagation, two message passing algorithms
that were previously exploited to study the human brain [9].

Belief Propagation

Message passing algorithms are computationally cheap
alternatives of the Monte-Carlo method [14]. One of these
efficient algorithms is Belief Propagation (BP). It is easy to
program, and known to be exact in random graphs. Here it
is employed to infer the stationary values or beliefs b; of the
electrical activity intensity of each neuron i after convergence
[15].

Within this algorithm, we consider that the dynamics of
the system is described by the transmission and reception
of messages m;; between the neurons (i, j). Therefore, m;;(s;)
can take values between 0 and 1 and is interpreted as the
probability, that according to j, i is in the state s;. The
probabilty, m;i(s;) depends on the state of node i (s;), the
synaptic connectivity between them (J;;) and the messages
that j received from each of its neighbors other than i:

H my;(s;)

IENG)\i

mji(s;) = k Z eBUsisihs;) 2)
5

where k is a normalization constant, /; is the external field
over node j (k; = 0 for every node in our system), N(j)\i refers
to the set of neighbors of node j, excluding neighbor i. The
parameter f3 is the inverse of the temperature T of the system
and is a measure of the noise in the system.

The algorithm consists of iterating the eq. (2) over each edge
in the network until the messages converge to a fixed point
(the equilibrium configuration). In our case this convergence
was achieved when the maximum relative variation of the
messages between one iteration cycle and another was lower
than Oz = 1077. Once BP converges to the fixed point,
the belief of each node of the network is obtained. These
results constitute the equilibrium values for the probabilities
of each neuron to be active or inactive. We then calculate the
magnetization m; corresponding to each neuron i by means of
the equation m; = b;(+1) — bj(—1), a measure of the activity in
the system.

Susceptibility Propagation

Susceptibility Propagation (SP) is an extension of Belief
Propagation. It is very useful in the reconstruction of neural
networks, when solving the inverse Ising problem. In this
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work, it was implemented to solve the direct problem, i.e., to
infer the response (or magnetic susceptibilities yx;;) between
two nodes (i, j).

In short, we start by writing the equations of BP for the
messages 111;(s;) in an alternative way:

mji(si) = q;i(si) = kz Plissipi(s;), 3)

where the messages p;i(s;) are defined as those containing the
influence of local external fields, as:

pji(sj) = e H q1j(s)

IENG)\i

(4)

If we use likelihood logarithmic notation to rewrite the eq. 3
and 4, we have:

1, pi+])
hij(si) = 7 log P (=D ©)
(1
uij(si) = %108 sztli (6)

We define new messages g;jx and v;jx as the derivatives of h;;
and u;;, with respect to the local field ;:

a”li]‘ d 8u,-]- -
8ijk = oy an Oijk = oy ( )
Then, there are two equations to be iterated:

Sijk = PO + Z Viik (8)
1eN()\j
1 - tanh?(h;;)

Vijk = ijk tanh(B];) )

1 - tanh?(u;))

Once the messages have converged the susceptibilities of the
system are then calculated using:

Xij = ﬁé,-]- + Z Uli,j (1 - mlz) (10)

1eN(i)
where m; is the magnetization computed with BP.

Here the susceptibilities can be interpreted as the influences
exerted by the local field acting on a node on the magnetization
of other nodes [8]. In this work we were interested in
the properties of resting-state network, therefore all the
computations were done in the limit of small fields.
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III. RESULTS

Fig. 3 shows the results of calculating, using BP, the average
magnetizations of the network for different temperatures, at
significant times during the development of the nematode.

The critical temperature is an important parameter in the
characterization of the real network. The intuition is that
around this region, the neurons have long range correlations
and therefore that this is the temperature at which the system
works. Far away from the critical temperature either all
neurons behave in the same way (high global magnetization,
m = 1), or they behave randomly (low global magnetization,
m = 0), in these cases there is no flux of information through
the network. Therefore, from now on, we will focus our
attention on the behavior of the model near the critical
temperature [12].

Fig. 4 shows, in more detail how this critical temperature
changes as a function of the actual time at which the neurons
are born. One can see some jumps reflecting the abrupt
variations in the neuronal birth and also intervals where
the function remains constant, during this time intervals the
system remains identical (no neurons were born).
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Figure 3. Variation of mean magnetization with temperature at different times
of the nematode development cycle.

The information provided by Fig. 3 and 5a suggests that the
changes in the critical temperatures are directly related to
variations in the number of neurons. Furthermore, the Fig.
5b indicates a nearly linear dependence between these two
quantities. This dependence is shown in the graph in 4b.

From now on we concentrate our efforts in studying the
resting-state activation map, in adult state, and near T, [9,10].
In Fig. 5 the intensity of the red color indicates how likely it
is that the neuron is activated. The neurons colored grey have
the lowest magnetizations. This indicates that these neurons
can be found on or off indistinctly, since the probability that
they assume one of the two states is similar to the probability
of finding them in the alternative state.

If we compare this activation maps with their functionality
(Fig. 1) we may notice that gray neurons in Fig. 5 seem to
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correspond to sensory neurons, that is, to those neurons that
in resting state do not have a preferential on or off state.
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Figure 4. Behavior of critical temperature of C. elegans neural network. a).
Variation of the critical temperature over time. b) Variation of the critical
temperature with the number of born neurons. An approximately linear
behavior is observed.
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Figure 5. Magnetization of neurons in the neighborhood of critical

temperatures for the adult nematode (time = 2500 min). The intensity of the
red color is proportional to the intensity of activation of the neurons.

With this qualitative results the next goal is to infer, from
the information of the system, the functional modules in
the nematode neural network. To this aim we first run SP
and compute the response functions. Then, we perform three
different clustering: one where the clusters of neurons were
randomly constructed (null hypothesis); another generated
from the synaptic connectivity matrix J, which is associated
with the structural network; and a third clustering constructed
from the susceptibility matrix of the system x.

The clusterings were obtained using the greedy_modularity
function of the Python clustering package. This function is
based on the hierarchical clustering algorithm and maximizes
the modularity of the network [17]. All the clusterings
were performed with the same conditions (same parameters
handed to the function). The comparison with the real
functional character of the neurons are shown in the similarity
matrices represented in figures 6.b and 6.c, respectively.
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The similarity matrix obtained from the random clustering
(see 6a) shows a remarkable homogeneity. This indicates that
the random partitions are not related to the functionality.
Logically, a null hypothesis can not provide information about
the function in the system. The contrary happens when the
clustering is done using | and yx. Both departure from the null
hypothesis, but the best coincidence between the clustering
and the actual function of the neurons is provided by the
clustering made using susceptibilities. In particular, it gives
a very good estimate of the sensory and motor communities.
This can be seen more directly in Fig. 7 where we assign to
the neurons belonging to each cluster the same colour of the
analogous community in the true (experimental) clustering:
red-sensory, blue-motor and yellow-interneuron. One must
notice that the difficulty in predicting the inter-neurons is
not surprising, on one hand their functionality is not as
well-defined as the one of sensory and motor neurons, on the
other, they may well suffer from changes in their functionality
during the developmental cycle of the system.

MF
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Figure 6. Similarity matrixes between real functionality modules and modules
found. a) Random choice b) By clustering from | ¢) By clustering from x. The
rows represent the real modules of functionality and the columns represent
the modules found, always sorted into sensory, inter-neuron and motor. The
color scale is directly proportional to the number of coincidences between
predicted and real partitionings. A blue square in the position (i, j) of the
matrix indicates that the real cluster i and the “found” cluster j share a large
number of nodes, while a yellow square means the opposite.
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Figure 7. Functional modularity (red-sensory, yellow-inter-neuron,
blue-motor) obtained from a) experimental data b) a random distribution c)
the structural neural network, encoded by the matrix of synaptic connectivity
J d) the matrix of susceptibilities of the system y.
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IV. CONCLUSIONS

In this work we modeled the neural activity of the C. elegans
as binary interacting variables whose dynamics is governed
by message passing algorithms. We postulate, as is usual for
these systems, that the dynamics ocurrs at a fixed critical
temperature (T), reflecting the noise in the system.

The results of our simulations suggest that both Belief
Propagation and Susceptibility Propagation can be used as
proper proxies to describe the functionality of the neurons
of C. elegans. The results of BP near the critical temperature
indicate that in the absence of external stimuli sensory neurons
are not activated. Moreover, the clustering obtained from the
susceptibilities matrix y computed with SP represents the
known functional character of the neurons better than the
connectivity matrix.

This work may be extended in various directions. For instance,
the same techniques can be used in the presence of external
stimuli, and the predictions can be compared with those that
could be derived from more realistic dynamics in the nervous
system.
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