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The temporal evolution of a quantum spherical spin in contact with
a thermal bath is studied by solving the exact Redfield equation,
in order to evaluate the effect of the frequently used Lindblad
approximation. This simple model can be used as a starting point
for the study of more complex open quantum systems. Significant
discrepancies are observed for short times. In the equilibrium state
both models give identical results, as expected.

Mediante la solución numérica de la ecuación exacta de Redfield,
se estudia cuantitativamente el efecto de la aproximación de
Lindblad sobre la dinámica temporal de un spin cuántico esférico
en contacto con un baño térmico. Se utiliza este caso simple como
punto de partida para el análisis de sistemas cuánticos abiertos
más complejos. Se evidencian discrepancias notables para tiempos
cortos, ası́ como la coincidencia de los resultados para el estado de
equilibrio.

PACS: Quantum statistical mechanics 05.30.-d; Quantized spin models 75.10.Jm; Lattice theory and statistics 05.50.+q

I. INTRODUCTION

It is well known that real quantum systems are not
truly isolated from the environment. This implies that the
comprehension of the properties of real quantum systems
is connected with the proper understanding of the effects of
dissipation and decoherence in quantum mechanics. This is a
subject that goes beyond academic interest in the foundation
of quantum mechanics and it is relevant to understand
experimental works on qubits and quantum information
processing.

Any theory for a quantum system that exchanges energy
with its environment should lead to a master equation which
satisfies three basic conditions: preserves the Hermiticity
of the density matrix, preserves the trace of the density
matrix and the probability of all possible states is
positive [1, 2]. There are two main methods to find such
master equations. The first one, Lindblad’s approach, is
phenomenological, and basically tries to build such master
equation satisfying the conditions above. In the second
approach, Bloch-Redfield’s, one takes the evolution of a
system and its environment and traces over the environment
degrees-of-freedom. Unfortunately, in most cases one has to
treat the system-environment interaction perturbatively.

In this work we compare the performance of both methods
in a simple model. We first show, following a standard
approach, how the Lindblad master equation can be
understood as a special case of the Redfield master equation.
We also make clear how the approximation made in going
from the later to the first changes the behaviour of the model,
specially on short time scales.

II. THE MODEL

The spherical spin model, in its classical form, was
introduced by Berlin and Kac [3] as an alternative to the
Onsager solution for the 2D Ising model. The classical
spherical spin model is formally identical to the Ising model,
with a global constraint to ensure the analytical result for the
partition function. This model has been extended to different
quantum versions [4, 5] in order to reproduce the right
low-temperature behaviour. Both models are remarkable for
having exact solutions in many settings and a non mean-field
type critical behaviour.

In absence of magnetic field, the Hamiltonian can be written
as

Ĥ =
∑

n

 g
2

p̂2
n +

µ(t)
2

ŝ2
n −

d∑
j=1

Jŝnŝn+e j

 , (1)

where the Lagrange multiplier µ(t) is chosen to satisfy the
constraint〈∑

n

ŝ2
n

〉
= N. (2)

The simplest possible approximation to deal with this
problem, is the mean field one. It translates into the solution
of the following one spin problem:

Ĥ =
g
2

p̂2 +
µ(t)

2
ŝ2, (3)

〈
ŝ2
〉

= 1. (4)

Operators satisfy the commutation relation[
ŝ, p̂

]
= i~. (5)
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The Hamiltonian in (3) is equivalent to

Ĥ = ~ω(t)
(
â†â +

1
2

)
, (6)

where creation and annihilation operators are introduced in
the usual way:

ŝ =

√
~g

2ω(t)

(
â† + â

)
, p̂ = i

√
~ω(t)

2g

(
â† − â

)
(7)

and

ω(t) =
√
µ(t)g. (8)

Notice that equation (6) can be understood as a quantum
harmonic oscillator with variable frequency. This is a problem
that have been largely studied in the past. Indeed it is an
archetypical problem in quantum optics, see for example [6]
and references therein but also the particular solution to
similar problems described in [7]. Historically, it is worth
to mention the study by [8] of a decaying Fabry-Pérot
cavity. In short, the usual motivation to study this kind of
hamiltonians in quantum optics comes from the interest in
the understanding of the interactions of an oscillator with
an environment, that may act as a time dependent damping
of the frequency, or alternatively by the presence of varying
external fields that my act as controlled modulators of this
frequency.

However, the spherical constraint (4) in this model implies
that

ω(t) =
~g
2

(〈
â†â†

〉
+ 〈ââ〉 + 2

〈
â†â

〉
+ 1

)
. (9)

and defines a model that differentiate from the ones usually
studied in quantum optics. In summary, our work could be
understood, starting directly from equation (6) as the study
of the interaction with the environment of a very particular
case of a quantum Hamiltonian with variable frequency, as
usually done in quantum optics. But, alternatively, it may be
understood as a mean field approximation to the quantum
spherical spin defined in (1) and (2).

III. OPEN QUANTUM SYSTEMS

The temporal evolution of the density matrix P̂ of a quantum
system is given by the Liouville-von Neumann equation:

˙̂P = −
i
~

[
Ĥ, P̂

]
, (10)

where Ĥ is the Hamiltonian of the system.

Let us consider an open quantum system S in contact with
another quantum system B, called the environment. The
Hamiltonian of the total system S + B is

Ĥ(t) = ĤS + ĤB + ĤSB, (11)

where ĤSB is the interaction Hamiltonian between S and B.
From now on, we will call S the reduced system.

In the interaction representation, the density matrix ˆ̃ρ of the
reduced system satisfies the Redfield equation

d ˆ̃ρ(t)
dt

= −
1
~2

t∫
0

dt′ TrB

[
ˆ̃HSB(t),

[
ˆ̃HSB(t′), ˆ̃ρ(t′) ⊗ R̂0

]]
, (12)

where the well known Born approximation has been used
[1, 2], i.e., the coupling between the reduced system and the
environment is weak. Here R̂0 is the density matrix of the
environment.

A commonly used approximation is the substitution of the
upper integration limit in Eq. (12) for infinity. The result is
known as Lindblad equation:

d ˆ̃ρ(t)
dt

= −
1
~2

∞∫
0

dt′ TrB

[
ˆ̃HSB(t),

[
ˆ̃HSB(t′), ˆ̃ρ(t′) ⊗ R̂0

]]
. (13)

This approximation is valid if the time scale over which
the state of the reduced system varies substantially is
large compared to the time scale over which the reservoir
correlation functions decay appreciably [1]. If this condition
does not hold, Eq. (13) is no longer valid and Eq. (12)
must be used to describe the time evolution of the reduced
system. For example, in photosynthetic complexes quantum
coherence may play a fundamental role in the highly efficient
transport of excitations, even in the presence of noise and
high temperatures [9].

Equations (12) and (13) are difficult to solve, even for simple
models. Instead, equations for the time evolution of some
physical observables are solved [2]. The purpose of this work
is to solve a set of equations derived from (12) in order to
estimate the magnitude of the approximation in (13). We
have chosen the quantum spherical spin model [4], whose
Lindblad dynamics have been recently studied in [10].

IV. REDFIELD DYNAMICS

Following [2], in the limit of zero temperature equation
(12) for a quantum harmonic oscillator of frequency ω(t)
in an environment consistent of an infinite set of harmonic
oscillators takes the form

d ˆ̃ρ(t)
dt

= −i∆(t)
[
â†â, ˆ̃ρ

]
+
γ(t)

2

(
2â ˆ̃ρâ† − â†â ˆ̃ρ − ˆ̃ρâ†â

)
, (14)

where

γ(t) = 2 Re {α(t)} , ∆(t) = Im {α(t)} (15)

and

α(t) = αL + αR(t), (16)

with,

αL =

∞∫
0

dτ

∞∫
0

dω′ exp [−i (ω′ − ω(τ)) τ] g(ω′)|κ(ω′)|2 (17)
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and,

αR(t) = −

∞∫
t

dτ

∞∫
0

dω′ exp [−i (ω′ − ω(τ)) τ] g(ω′)|κ(ω′)|2. (18)

We have explicitly separated the Lindblad, αL, and Redfield,
αR, contributions. We have also defined γL = 2 Re {αL},
γR(t) = 2 Re {αR(t)}, ∆L = Im {αL}, ∆R(t) = Im {αR(t)}.

In (17) and (18), g(ω) is the environment density of modes,
and κ(ω) is the coupling constant from the interaction
Hamiltonian ĤSB, which in the rotating wave approximation
takes the form

ĤSB = ~
∑

j

(
κ∗jâb̂†j + κ jâ†b̂ j

)
. (19)

We have assumed g(ω)|κ(ω)|2 linear in ω with a cutoff
frequency ωmax:

g(ω) |κ(ω)|2 = Cωθ(ωmax − ω), (20)

where C is a constant (irrelevant after adimensionalization)
and θ(x) is the Heaviside step function.

Due to the presence of ω(t) in the integrands of (17) and
(18), this problem must be solved in self-consistent form,
using Redfield equation (14) and the spherical constraint (4).
Following [10], we have taken the constant value ω(t) = ω0
in the evaluation of both integrals. This is equivalent to
consider the spherical constraint coming from a second bath,
whose relaxation time is much shorter than the thermal one.
Anyway, in next section we present the results for another,
non-trivial ω(t) dependence.

With the choice (20) and after some manipulation one can
show that:

γL = 2πω0, ∆L = −ωmax − ω0 ln
(
ωmax

ω0
− 1

)
(21)

γR(t) = −2ω0 [π − Si ((ωmax − ω0)t) − Si (ω0t)] +

+
4
t

sin
(
ωmaxt

2

)
sin

(
(ωmax − 2ω0)t

2

)
(22)

∆R(t) = ω0 [Ci ((ωmax − ω0)t) + Ci (ω0t)] +

+
2
t

sin
(
ωmaxt

2

)
cos

(
(ωmax − 2ω0)t

2

)
], (23)

where

Si(z) =

z∫
0

sin t
t

dt, Ci(z) = −

∞∫
z

cos t
t

dt. (24)

V. RESULTS AND DISCUSSION

From (14) the following temporal evolution equations are
obtained:

∂ 〈â〉
∂t

= −

[
γ(t)

2
+i (ω(t)+∆(t))

]
〈â〉 ,

∂
〈
â†â

〉
∂t

=−γ(t)
〈
â†â

〉
(25)

and

∂ 〈ââ〉
∂t

= −2
[
γ(t)

2
+ i (ω(t) + ∆(t))

]
〈ââ〉 . (26)

Numerical solutions of the system (25)-(26) are shown in
Figure 1 for different values of Ω = ωmax/ω0 and Γ = ~g/γL.
Frequency ω(t) (in units of ~g/2) and magnetization m(t) are
plotted as functions of time (in units of 1/γL). The dashed
line corresponds to Lindblad approximation, and the solid
line to Redfield dynamics.
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Figure 1. Frequency ω(t) (in units of ~g/2) and magnetization m(t) vs time
(in units of 1/γL). Dashed line: Lindblad approximation, solid line: Redfield
dynamics. (a) Γ = 0.01, Ω = 10, (b) Γ = 0.5, Ω = 10, (c) Γ = 2, Ω = 10.

The long time behaviour of both approximations is the same,
however, clear discrepancies appear at short time scales
before the equilibrium. Remarkably, the longer relaxation
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times and the more pronounced oscillations of the Redfield
dynamics.
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Figure 2. Magnitudes γR(t) (solid line) and ∆R(t) (dashed line) in units of γL
vs time (in units of 1/γL).
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Figure 3. Decay coefficient γ(t) − 4 Im 〈ââ〉 for ω(t) in units of γL vs time
(in units of 1/γL). Solid line: Redfield dynamics, dashed line: Lindblad
approximation.

The longer relaxation time can be traced back to the role of
γ(t) in the dynamics of the system. One must notice first that
in the set of equations (25)-(26), 1

γ(t) defines a time dependent
relaxation scale of the model. It follows that γ(t) = γL + γR(t)
where the behaviour of γR(t) (in units of γL) as function of
time (in units of 1/γL) is shown in Figure 2. From the figure,
it is evident that γR(t) is negative in all the relevant time
interval. This immediately implies that γ(t) = γL + γR(t) is
smaller than γL which is consistent with the larger relaxation
time of the Redfield dynamics.

On the other hand, ω(t) satisfies the equation

∂ω(t)
∂t

= −
[
γ(t) − 4 Im 〈ââ〉

]
ω(t) −

[
γ(t) − 4∆(t) Im 〈ââ〉

]
. (27)

Due to the temporal behaviour of γ(t) and ∆(t), shown in
Figure 2, the second term in the right hand side of (27)
becomes small very fast, then

∂ω(t)
∂t
≈ −

[
γ(t) − 4 Im 〈ââ〉

]
ω(t). (28)

Therefore, the larger frequency for the oscillations of ω(t)
observed in Redfield approach can be traced back to the more
complex structure of the decay coefficient in (28), as shown
in Figure 3.

In Figure 4 we show the results obtained when we calculate
integrals in (17) and (18) using ω(t) = ω0 e−a t, where a is a
positive constant. We have taken the same parameters as in
Figure 1c. Comparison between both graphics suggests the
robustness of the results with respect to the choice of ω(t) in
these integrals.
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Figure 4. Frequency ω(t) (in units of ~g/2) and magnetization m(t) vs time
(in units of 1/γL). Dashed line: Lindblad approximation, solid line: Redfield
dynamics. The choice ω(t) = ω0 e−a t in Eqs. (17) and (18) has been used.

VI. CONCLUSIONS

We have quantitatively evaluated the effects of the Lindblad
approximation in the simple case of the mean field quantum
spherical spin model by considering the numerical solution
of the exact Redfield equation. As expected, the long time
predictions of both approximations is the same, however,
important discrepancies are evident at short time scales.
These discrepancies are explained unveiling the role of
the Redfield contributions to the dynamical equations of
the model. In particular, we can explain why Redfield
approximation has longer time scales and more frequent
oscillations.
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