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An analytical investigation of the combined effects of throughflow
and magnetic field on the convective instability in an electrically
conducting fluid layer, bounded in a Hele-Shaw cell is presented
within the context of linear stability theory. The outcome of
the important parameters on the stability of the system is
examined analytically as well as graphically. It is observed that the
throughflow and magnetic field have both stabilizing effects, while
the Hele-Shaw number has a destabilizing effect on the behavior of
the system. It is also found that the oscillatory mode of convection is
possible only when the magnetic Prandtl number takes the values
less than unity.

Se presenta una investigación analı́tica de los efectos combinados
del flujo y el campo magnético en la inestabilidad convectiva de
una capa fluida conductora de electricidad, confinada en una celda
de Hele-Shaw, en el contexto de la teorı́a lineal de la estabilidad.
Se examinan los resultados para los parámetros relevantes tanto
analı́tica como gráficamente. Se observa que tanto el flujo como
el campo magnético, tienen efectos estabilizantes, mientras que el
número de Hele-Shaw tiene un efecto desestabilizante. También se
encuentra que el modo de convección oscilatorio es posible sólo
cuando el número magnético de Prandtl es menor que la unidad.

PACS: Hydromagnetic plasma instability (Inestabilidad de plasma hidromagnético), 52.35.Py; Convection (Convección), 47.55.P-; Flow
instabilities (Inestabilidades de flujo), 47.20.Bp; Applied fluid mechanics (Mecánica de fluidos aplicada), 47.85.Dh; Fluids (Fluidos),
47.35.-I

I. INTRODUCTION

This paper deals with the joint effect of magnetic field
and throughflow on the convective instability of an
electrically conducting fluid layer confined vertically by two
thermally insulated planes and horizontally by two perfect
heat conducting planes. This configuration is called the
Hele-Shaw cell. A range of applications of fluid mechanics
goes to the Hele-Shaw flows. Nowadays, this flow is
applied in numerous fields of physics and engineering, in
particular, material processing and crystal growth owing
to manufacturing procedures [1–3]. Also, during the last
years, convection in a porous medium has gained significant
interest because of its importance in geothermal, petroleum
production, oil reservoir, building of thermal insulations and
nuclear reactor [4]. The problem in a porous medium can
be easily solved by taking an appropriate permeability of
the Hele-Shaw cell. Hele–Shaw [5] was the first who pointed
out the similarity between the two-dimensional flow in a
porous medium and Hele-Shaw cell by taking an equivalent
permeability for the Hele-Shaw cell, where is the width
of the cell. He showed that the Hele-Shaw cell can be a
controlling device for quantitative study of two-dimensional
flow in porous media by suitably recognizing the Hele-Shaw
permeability. The similarity among flow in a porous medium
and flow in a Hele-Shaw cell has commonly been applied to
study convection in the former [6–8].

The convective instability of electrically conducting fluid in
the existence of a magnetic field has drawn great attention

as a consequence of its many real-world applications
for instance in electrical machineries, chemical apparatus,
plasmas, MHD accelerators and power generation systems.
The study of magnetic field on the onset of convection
yields a range of activities when the ratio of the magnetic
to thermal diffusivity is small; the governing system then
allows both stationary and oscillatory mode of convections.
The strength of magneto convection is indicated by the
Chandrasekhar number, which is the relation between the
Lorentz force and the viscosity. If the Lorentz force was
smaller than the viscous force, then the convective motions
twist and stretch the magnetic field. If the Lorentz force was
larger than the viscous force, then the magnetic field sets
the plasma flows along the field direction and constrains the
convection. The large numbers of investigations related to
magneto convection are recognized by Chandrasekhar [9]
and Nield and Bejan [4]. Thompson [10] and Chandrasekhar
[9] were the first to examine the effect of magnetic fields on
the convective instability. Rudraiah and Shivakumara [11]
studied convection with an imposed magnetic field. They
observed that the magnetic field, under some situations,
makes the system unstable. The interplay between magnetic
fields and convection by considering the effect of a solid
rotor on a non-uniform magnetic field was investigated by
Weiss [12]. Abd-el-Malek and Helal [13] studied the problem
of an unsteady convective laminar flow under the effect of a
magnetic field. They found that the velocity boundary-layer
thickness becomes smaller for the increase in the magnetic
influence number. Very recently, the effect of magnetic field
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on the convective instability in nanofluids was considered by
Yadav et al. [14–18], Chand and Rana [19,20], Sheikholeslami
et al. [21–23], Al-Zamily [24], Gupta et al. [25] and Hamada
et al. [26].

The throughflow effect on the convective instability in
an electrically conducting fluid layer with magnetic field
is an important concept because of its applications
in engineering, geophysics and magneto-hydrodynamics.
In situ processing of electronic components, chemical
equipment, cooling of nuclear reactors, energy assets
such as coal, geothermal energy, oil shale and many
real-world problems frequently occupy the throughflow
in a Hele-Shaw cell. The significance of buoyancy-driven
convective instability in such circumstances may become
important when specific processing is needed. Besides, the
throughflow effect in such situations offers the opportunity
of controlling the convective instability by regulating the
throughflow in accumulation to the gravity. Throughflow
changes the basic temperature profile from linear to nonlinear
with layer height, which influences the stability of the system
considerably. The effect of throughflow on the onset of
convection was studied by Jones and Persichetti [27]. Its
extension to porous medium was made by Wooding [28],
Sutton [29] and Nield [30]. They observed that the effect of
throughflow is not always stabilizing and depends on the
character of the boundaries. Khalili and Shivakumara [31]
examined the effect of throughflow on the onset of convection
in a porous medium with internal heat generation. They
observed that throughflow destabilizes the system in the
presence of an internal heat source, even if the boundaries are
of the same type. Later on, many investigators studied the
effect of throughflow on convective instability for different
types of fluids [32–36].

However, no study has been found in the literature
which considers the effect of throughflow on magneto
convection confined within a Hele-Shaw cell. Therefore,
here we examine the combined effect of throughflow and
magnetic field on the convective instability in an electrically
conducting fluid layer, bounded within a Hele-Shaw cell. By
linear stability theory, the critical conditions for stationary
and oscillatory convections are derived analytically, and
discussed graphically.

II. MATHEMATICAL MODEL

In this work, an infinitely extended horizontal
incompressible electrically conducting fluid layer of height
d is considered. The fluid layer is confined between two
parallel boundaries at z∗ = 0 and z∗ = d which are preserved
at uniform but different temperatures T∗l and T∗u (T∗l > T∗u),
respectively. The fluid shall be infinite in the x−direction,
but restricted in the y−direction by sidewalls at y∗ = 0
and y∗ = b. For a suitably small thickness, b � d, the flow
can be estimated as a 2−dimensional Stokes flow in the
x − z−plane, usually called a Hele-Shaw flow. A constant
magnetic field H∗ = (0, 0,H∗0) is applied. The physical
configuration of the system is shown in figure 1. Asterisks
are used to differentiate the dimensional variables from the

non-dimensional variables (without asterisks).

Figure 1. The physical configuration of the system.

By considering the Hele-Shaw approximation and using the
Boussinesq approximation, the governing equations under
this model are:

∇
∗~v∗ = 0, (1)

µ

K
~v∗ = −∇∗p∗ + ρ0

[
1 − β(T∗ − T∗u)

]
~g + µe(~H∗ · ∇∗)~H∗, (2)

[
∂
∂t∗

+ (~v∗ · ∇∗)
]

T∗ = α∇∗
2
T∗, (3)

[
∂
∂t∗

+ (~v∗ · ∇∗)
]
~H∗ = νm∇

∗
2 ~H∗ + (~H∗ · ∇∗)~v∗, (4)

∇
∗ ~H∗ = 0. (5)

Here, ~v∗ is the velocity of the fluid, t∗ is the time, ρ0 is
the fluid density at the reference temperature T∗u, p∗ is
the pressure, ~H∗ is the magnetic field, β is the thermal
expansion coefficient, α is the thermal diffusivity, K = b2/12
is the permeability of the fluid flow in the Hele Shaw
cell, µ, νm, µe and k are the viscosity, magnetic viscosity,
magnetic permeability and thermal conductivity of the fluid,
respectively. As stated before, eqs. 1,2,3,4,5 are written
under Boussinesq approximation, which neglects density
differences except where they appear in terms multiplied
by gavity’s acceleration.

We assume that there is an upward throughflow with
constant mean value w∗u. Thus the boundary situations are:

w∗ = w∗c, T∗ = T∗l , at z∗ = 0, (6a)
w∗ = w∗c, T∗ = T∗u, at z∗ = d. (6b)

We define the following non dimensional variables:

x =
x∗

d
, t =

t∗

d2α, p =
p∗d2

µα
, T =

T∗ − T∗u
T∗l − T∗u

,~v =
d
α
~v∗, ~H =

~H∗

H∗0
. (7)

The governing equations then become:

∇~v = 0, (8)
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~v
Hs

= −∇p + RaTêz + QPm(~H · ∇)~H, (9)

[
∂
∂t

+ (~v · ∇)
]

T = ∇2T, (10)

[
∂
∂t

+ (~v · ∇)
]
~H = (~H · ∇)~v + Pm∇

2 ~H, (11)

∇~H = 0. (12)

In the non-dimensional form, the boundary conditions
become:

w = λ, T = 1, at z = 0, (13a)
w = λ, T = 0∗, at z = 0. (13b)

The non-dimensional parameters in eqs. 8-12 are Ra =
gd3β∆T/αν (Rayleigh number), Hs = K/d2 (Hele-Shaw
number), Pm = νm/α (magnetic Prandtl number),
Q = µeH∗

2

0 d2/ρ0ννm (Chandrasekhar number), ν = µ/ρ0
(kinematic viscosity), νm = µe/ρ0 (magnetic viscosity) and
λ = dw∗c/α (Pèclet number).

II.1. Basic State

The basic state of the fluid is considered time-independent,
and is given by

~vb = λêz, T = Tb, p = pb, ~Hb = êz. (14)

Then eq. 10 gives:

d2Tb

dz2 − λ
dTb

dz
= 0. (15)

The boundary conditions for Tb(z) are:

Tb = 1 at z = 0, Tb = 0 at z = 1. (16)

With the application of the boundary conditions 16, the
solution of eq. 15 is

Tb(z) =
eλ − eλz

eλ − 1
(17)

II.2. Perturbation theory

We now apply small perturbations on this basic state as:

~v = ~vb + ~v ′, T = Tb + T′, p = pb + p′, ~H = êz + ~H ′ (18)

where the primed quantities are functions of x and t.

After substituting the eq. 18 into eqs. 8-??, and linearizing the
equations, we get:

∇~v ′ = 0, (19)

~v ′

Hs
= −∇p′ + RaT′êz + QPm

∂~H ′

∂z
, (20)

∂T′

∂t
+ ~v ′ · ∇Tb + ~vb · ∇T′ = ∇2T′, (21)

~H ′

∂t
+ ~v ′ · ~Hb

′ + ~vb
′
· ~H ′ = ~H ′

· ∇~vb + ~Hb · ∇~v ′ + Pm∇
2 ~H ′ (22)

∇~H ′ = 0. (23)

Operating on eq. 21 with êz · ∇ and using the eqs. (19) and
(23), we obtain the -component of the momentum equation
as:

∇
2w′

Hs
− Ra∇

2
pT′ −QPm∇

2

[
∂H′z
∂z

]
= 0. (24)

The z-component of the eq. 22 is

∂H′z
∂t

+ λ
∂H′z
∂z

=
∂w′

∂z
+ Pm∇

2H′z, (25)

eliminating from eqs. 24 and 25, we get:(
Pm∇

2
−
∂
∂t
− λ

∂
∂z

) [
∇

2w′

Hs
− Ra∇

2
pT′

]
+ QPm∇

[
∂w′

∂z

]
= 0, (26)

taking the perturbation quantities in the form:

(w′,T′) = [W(z),Θ(z)] exp[ikxx + ikyy + st], (27)

where kx and ky are the wave numbers in the x and y
directions, respectively and s is the growth rate of volatility.
The growth rate s is commonly a complex number such that
s = sr + isi. The case sr < 0 means all time stability, while the
system is unstable when sr > 0. For neutral stability, the real
part of s is zero. Hence, we consider s = isi, where si is real
and is a dimensionless frequency.

After inserting eq. 27 into eqs. 26 and 21, we have:

[Pm(D2
− a2) − isi − λD]

[
(D2
− a2)

W
Hs

+ a2RaΘ
]

(28)

+ QPm(D2
− a2)D2W = 0,

(D2
− a2
− λD − isi)Θ − f W = 0, (29)

where d/dz ≡ D, f (z) = λeλz/(1 − eλ) and a =
√

k2
x + k2

y is the
resulting dimensionless wave number.

In the perturbation dimensionless form, the boundary
conditions become:

W = 0, Θ = 0, at z = 0, 1 (30)
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In order to solve the system of equations 28-30, the Galerkin
weighted residuals method is applied. Accordingly, the
support functions for and are assumed as:

W =

N∑
P=1

APWP, Θ =

N∑
P=1

BPΘP, (31)

where WP = ΘP = sin pπz (fulfilling the boundary
conditions), and AP and BP are unknown coefficients, and p =
1, 2, 3, ...,N. On putting the above expression for W and Θ into
eqs. 28-29, we get a system of 2N linear algebraic equations
in the 2N unknowns AP and BP where p = 1, 2, 3, ...,N.
For the occurrence of non-trivial solutions, the determinant
of coefficients matrix must be zero, which provides the
characteristic equation for the system with Rayleigh number
Ra as the eigenvalue.

III. RESULTS AND DISCUSSION

To get analytical results, we choose so the Darcy-Rayleigh
number Ra is given by

Ra = ∆1 + is1∆2, (32)

where

∆1 =
J(λ2 + 4π2)

[
J(s2

i + J2P2
m) + Hsπ2Pm(s2

i + J2Pm)Q
]

4a2Hsπ2(s2
i + J2P2

m)
(33)

∆2 =
J(λ2 + 4π2)

[
s2

i + JPm(JPm + Hsπ2(Pm − 1)Q)
]

4a2Hsπ2(s2
i + J2P2

m)
(34)

Here, J = (a2 + pi2).

Since Ra is a physical quantity, it must be real. Thus, it follows
from eq. 33 that either si = 0 (stationary convection) or ∆2 = 0
(si , 0 non-oscillatory convection).

III.1. Stationary mode of convection

Stationary convection occurs when si = 0. In this case, from
eq. 33, the stationary Rayleigh number RS

a can be obtained as

RS
a =

(a2 + π2)(λ2 + 4π2)
[
(a2 + π2) + Hsπ2Q

]
4a2Hsπ2 (35)

From the eq. 35, it is clear that the critical Rayleigh number
increases with an increase in Q and λ, while decreases
with Hs. Thus, the magnetic field and the throughflow have
a stabilizing effect, while the Hele Shaw number has a
destabilizing effect on the system.

The critical wave number ac can be obtained as

ac = π(1 + HsQ)1/4. (36)

For the case of porous medium (Hs = 1), eqs. 35 and 36
become:

RS
a =

(a2 + π2)(λ2 + 4π2)
[
(a2 + π2) + π2Q

]
4a2π2 , (37)

ac = π(1 + Q)1/4. (38)

If there is no magnetic field (Q = 0), eqs. 37 and 38 become:

RS
a =

(a2 + π2)2

a2

[
1 +

λ2

4π2

]
, (39)

ac = π. (40)

This result is identical to that found by Nield and Kuznetsov
[37].

From eqs. 39 and 40, when the throughflow is equal to
one, i.e. λ = 1, the critical Rayleigh number is 40.4784.
Recently, Barletta et al. [38] obtained a more exact value by
using a different methodology, getting 40.8751. Hence the
approximation formula used in this paper gives an accuracy
of 1 %. This shows that the approximation used in this paper
is satisfactory for the case when throughflow is equal to one.

In the absence of throughflow, i.e. λ = 0 eq. 37 gives

RS
a =

(a2 + π2)
[
(a2 + π2) + π2Q

]
a2 . (41)

Eq. 41 coincides with that of Kiran et al. [39].

III.2. Oscillatory mode of convection

For oscillatory convection ∆2 = 0 and si , 0. Using these in
eq. 33, the expressions for oscillatory Rayleigh number ROsc

a
and the frequency of oscillations si can be written as:

ROsc
a =

J(λ2 + 4π2)
[
J(s2

i + J2P2
m) + Hsπ2Pm(s2

i + J2P2
m)Q

]
4a2Hsπ2(s2

i + J2P2
m)

. (42)

si = −JPm

[
JPm + Hsπ

2(Pm − 1)Q
]

(43)

Eq. 43 shows that the necessary condition for the occurrence
of oscillatory mode of convection is:

JPm

Hsπ2(1 − Pm)
< Q (44)

In order to build Q positive, the magnetic Prandtl number Pm
must be less than unity. From eq. 43, it is also found that the
oscillatory mode of convection is not likely in the absence of
magnetic field.

The graphical representation of the stability of the system
in (Ra, a) plane is made in Figs. 2-5 for various parameter
values. The values used in the figures are taken from various
sources [4, 9, 40–42]. The linear stability theory gives the
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condition of stability in terms of the critical Rayleigh number,
below which the system is stable, and unstable above.

Figure 2. The effect of the Hele-Shaw number Hs on the stationary and
oscillatory convection curves at λ = 0.5, Q = 50 and Pm = 0.5.

Figure 3. The effect of the magnetic field Q on the stationary and oscillatory
convection curves at λ = 0.5, Hs = 0.5 and Pm = 0.5.

Figure 2 represents the effect of the Hele-Shaw number
Hs on the stability of the system. From the figure it is
observed that the critical Rayleigh number increases with a

decrease in the Hele-Shaw number Hs. Hence, the Hele-Shaw
number has a destabilizing effect on the behavior of the
system. This is because on increasing the value of Hele-Shaw
number the permeability of the Hele-Shaw cell increases and
consequently the width of Hele-Shaw cell increases, which
in turn makes the fluid flow faster.

Figure 4. The effect of the through flow λ on the stationary and oscillatory
convection curves at Q = 50, Hs = 0.5 and Pm = 0.5.

Figure 5. The effect of the magnetic Prandtl number Pm on the stationary
and oscillatory convection curves at Q = 50, Hs = 0.5 and ·λ = 0.5.
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The effect of the magnetic field parameter Q on the onset of
stationary and oscillatory convection curves are displayed in
Figure 3. This figure shows that a decrease in the value of
Q decreases the critical stationary and oscillatory Rayleigh
numbers. Hence the magnetic field parameter Q delays the
onset of convection. This is because the increase of Q increases
the Lorentz force, and the Lorentz force gives more resistance
to transport. Hence, the magnetic field has a stabilizing effect
on the system.

The effect of the throughflow parameter λ on the stationary
and oscillatory mode of convections is shown in Figure 4.
The minima on each plot give the critical Rayleigh number
for the exchange of stabilities. This critical Rayleigh number
decreases with decreasing value of the throughflow λ and
hence their effect is to delay the onset of convection.

To measure the effect of the magnetic Prandtl number Pm on
the stability of the system, the deviation of Rayleigh number
for stationary and oscillatory mode of convection is plotted in
Figure 5 as a function of wave number a for different values
of the magnetic Prandtl number Pm. From this figure it is
observed that the magnetic Prandtl number Pm has no effect
on the stationary convection, while for oscillatory convection
it has a stabilizing effect on the system.

IV. CONCLUSIONS

In this paper, the combined effect of throughflow and
magnetic field on the instability of a fluid confined within
a Hele-Shaw cell heated from below was investigated using
linear stability theory. The behaviour of the magnetic field,
the throughflow and the Hele-Shaw number on the onset
of convection was analyzed analytically and discussed
graphically. The results show that the increase in magnetic
field and strength of throwflow tends to stabilize the system.
An increase in the Hele-Shaw number was found to have a
destabilizing effect on the system. It was also observed that
the oscillatory mode of convection is possible only when the
magnetic Prandtl number is smaller than unity.
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