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Abstract. In previous papers it has been shown that the presence of negative-norm states or negative- frequency solu-

tions is indispensable for a fully covariant quantization   (Krein space quantization) of the minimally coupled free sca-

lar field in de Sitter spacetime. The new method of quantization has been extended to free boson fields (charged sca-

lar field, massive and massless vector field) in Minkowski spacetime.  In this paper, quantization of free spinor field is 

reformulated in generalized Krein space. The presence of unphysical negative-frequency states plays the role of an 

automatic renormalization tool for the theory. 

 

Sumario.  En artículos anteriores se ha demostrado que la presencia de estados de norma negativa o de solucio-

nes de frecuencia negativa es indispensable para una cuantización totalmente covariante (cuantización del espa-

cio de Krein) del campo libre escalar en el espacio-tiempo de de Sitter.  El nuevo método de cuantización se ha 

extendido a los campos de bosones libres (campo escalar cargado, campos vectoriales masivos y sin masa) en el 

espacio-tiempo de Minkowski.  En este artículo la cuantización del campo de spinores libres se reformula en el 

espacio generalizado de Krein.  La presencia de estados de frecuencia negativa no físicos juega un papel en la 

herramienta automática de renormalización para la teoría. 
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1 Introduction 
 

It has been shown that negative-norm states necessar-

ily appear in a covariant quantization of the free 

minimally coupled scalar field in de Sitter space-

time.
1,2

 Consideration of the negative-norm states was 

proposed by Dirac in 1942.
3
 In 1950 Gupta

4
 and 

Bleuler
5
applied the idea in QED to respect the Lor-

entz covariance of vector field quantization.   The pres-

ence of higher derivatives in the Lagrangian also 

leads to ghosts; states with negative- norms
6
. Mathe-

matically,  for the minimally coupled scalar field in de 

Sitter  spacetime
2
, which plays an important  role in 

the  inflationary  model as well as in the  linear quan-

tum gravity
7,8

, it  has  been proven  that the  use of 

the  two  sets  of solutions  (positive  and negative  fre-

quency  states)  is unavoidable  for preservation  of 

(i)  causality  (locality),  (ii) covariance, (iii) elimina-

tion of the infrared divergence. This causal approach 

was generalized further to the calculation of the gravi-

ton propagator in de Sitter spacetime
9
, and the one- 

loop effective action for the scalar field in a general 

curved spacetime
10

. In this process ultraviolet and in-

frared divergences have been automatically elimi-

nated
11

. The origin of divergences in standard quantum 

field theory lies in the singular character of the Green’s 

function at short relative distances (ultraviolet diver-

gence) or in the large relative distances (infrared diver-

gence). The procedures of normal ordering and renor-

malization have been used for eliminating the diver-

gences of physical quantities.   In another  word, the 

problem of divergence in QFT  appears  when the  
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negative  frequency states  which are also solutions of 

the field equation  in the classical level, are discarded 

in the quantum  level due to the principle of quantum  

field theory  (positivity  condition).  This discarding  

breaks the elegance of the theory (standard  QFT)  

and it causes the appearance  of anomaly. 

In  a  previous  work it  has  been  shown that the  

combination  of quantum   field theory in Krein  space 

together  with  the  consideration  of quantum  metric  

fluctuations  results  in quantum  field theory  without  

any divergences
12

.  Ignoring the  positivity  condition  

(for norm  and  energy),  similar  to  the  Gupta-Bleuler   

quantization   of the  electrodynamics  in Minkowski 

spacetime,  the free boson field quantization  has been 

performed in Krein space resulting in both positive 

and negative norms for the unphysical (negative-

energy)  states
13

. However, in the case of spinor field 

they are positive-norm states moving forward in time 

(vise versa of antiparticles).  Then, the space of quan-

tization for spinor field is called generalized Krein 

space
14

. 

Here we present the free spinor field, (s = 1/2), 

quantization  in generalized Krein space. In this  ap-

proach,  the  auxiliary  negative-frequency  states  have 

been utilized,  the  modes of which do not  interact  

with the  physical states  or the  real physical world.  

Naturally these modes can not be affected by the 

physical boundary conditions.   Following this scheme, 

the normal ordering procedure is rendered useless be-

cause the ultraviolet divergence in the stress tensor 

disappears and the vacuum energy remains convergent 
2
. The most interesting result of this construction is the 

convergence of the Green’s function at large distances, 

which means that the infrared divergence is gauge 

dependent.
2,11

 Presence of the “unphysical” (negative-

energy) states plays the role of an automatic renor-

malization tool for the theory. The physical interpreta-

tion   however is not yet clear and any further progress 

calls for more investigations.
15–18

 

It is noteworthy that by the new method of quan-

tization, a natural renormalization of the following 

problems have been already attained: 

• The massive free field in de Sitter spacetime2. 
• The graviton two-point function in de Sitter 

spacetime
9
. 

• The one-loop effective action for scalar field in a 

general curved spacetime
10

. 

• Tree level scattering amplitude for a scalar field 

with one graviton exchange in de Sitter spacetime
19

. 

•The interacting QFT in Minkowski spacetime (λφ
4   

theory).
20

 

• Casimir effect in Krein space quantization
21

. 

• Free boson fields in Krein space quantization  
13

. 

• One-loop approximation of Møller scattering in 

generalized Krein space quantization
14

. Pursuing the 

above works and through the same new approach, 

quantization of free spinor 

field, its vacuum energy and momentum,  and the 

associated divergence-free two-point function in Min-

kowski spacetime  are worked out in generalized 

Krein space.  Again, it is seen that the presence of 

unphysical states plays the role of an automatic re-

normalization tool for QFT. 

 

2 Dirac field quantization in Hilbert 
space 

 

We briefly recall the  spinor  field quantization   in 

standard   quantum  field theory.   The Lagrangian den-

sity of a classical spinor field ( )xψ  with mass m 

is
22,23 

( )L i m
µ

µψ γ ψ= ∂ −  

The spinor field satisfies the Dirac equation 

 

( ) ( ) 0 ( ) ( )

(1, 1, 1, 1)

∂ − = = ∂ −

= − − −

i m x i m x

diag

µν
µ ν

µν

ψ η γ ψ

η
 

The two sets of solutions are
23

 

.

3
( , ) ( )

(2 )

s s ik x

k

m
U k x u k e

π ω
−=

�

�
  (Positive energy) 

.

3
( , ) ( )

(2 )
=

�

�
s s ik x

k

m
V k x k eυ

π ω
 (Negative energy) 

with s = 1, 2 and
1

0 2 2( . ) 0
k

k k k mω= = + ≥�

��
. 

These solutions are lot complex conjugate of each other 

but  they satisfy the following relations
23

 
5

5

5

5

( ) ( )

( ) ( )

( ) ( )

( ) ( )

=

=

=

=

� �

� �

� �

� �

s s

s s

s s

s s

u k k

k u k

u k k

k u k

γ υ

υ γ

υ γ

υ γ

 

where 
† 0

u u γ=  is the Dirac adjoint. In order to 

quantizing the spinor field in the usual way  one 

chooses the positive energy states  (standard  QFT),  

and the field operator  is given by 
3 †

1,2

( ) ( , ) ( , )s s

ks ks
s

x d k b U k x d V k xψ
=

 = + ∑∫ � �

�
 

where 
ks

b�  is the annihilation  operator  of one-

particle  state  with positive energy and †

ks

d �
 i s  the  

creation  operator  of one-antiparticle  state  with  

negative  energy (
ks

b� and 
†

ks

d �
 are  two 

independent operators). 

Defining the canonical conjugate field to ( )xψ by 

(dot stands for time-derivative) 
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†
( ) ( )

∂
= =

∂ �

L
x i xπ ψ

ψ
 

one obtains  the nonzero (equal-time)  anticommuta-

tion relation 

{ }† 3
( ) , ( ) ( )00

( , 1, 2, 3, 4)

′ ′= −
′=

=

� �
x x x x

x x
ψ ψ δ δα β αβ

α β
 

Creation  and annihilation operators  are constrained  to 

obey the following anticommutation rules 

{ } { }
{ } { } { }
{ }
{ } { } { }
{ }

† † 3
, , ( )

† †
, , ,

† †
, 0

† † †
, , ,

†
, 0

′= = −′′ ′ ′ ′

= = =
′ ′ ′ ′ ′ ′

=
′ ′

= = =
′ ′ ′ ′ ′ ′

=
′ ′

� �
� � � �

� � � � � �

� �

� � � � � �

� �

b b d d k k
ssks k s ks k s

b b b b d d
ks k s ks k s ks k s

d d
ks k s

b d b d b d
ks k s ks k s ks k s

b d
ks k s

δ δ

 

The vacuum state |0 > is defiled as a state that is 

destroyed by all annihilation operators, 

0 0 , 0 0,
ks ks

b d k> = > = ∀� �

�
 

One can obtain the one-physical particle/antiparticle    

state by letting creation operator  act on the vacuum 

state 

† †

, ,
0 1 , 0 1> = > > = > ∀� � � �

�
b d

ks k s ks k s
b d k  

Where  ( )1 1
b d

ks ks
��� ���   is called a one-physical par-

ticle (antiparticle) state.   The anticommutation  rela-

tions together  with  the  normalization  of the  vacuum,  

< 0|0  >= l, lead to positive norms for these physical 

parts 

3

, ,

3

, ,

1 1 ( ) ,

1 1 ( )

′

′

′= + −

′= + −

� �

� �

� �

� �

b b

k s k s

d d

k s k s

k k

k k

δ

δ
 

The Hamiltonian and momentum operators of Dirac 

field are defiled as 
3 3 0

3

( ) ( )= − =

= − ∇

∫ ∫

∫

� �
� �

� ��

H d x L d x i

P i d x

π ψ ψ γ ψ

ψ ψ
 

Calculating the energy and momentum operators in 

terms of  Fourier modes gives 

3 † †( )
k ks ks ks ks

s

H d k b b d dω= −∑∫ � � � � �

�

3 † †( )
ks ks ks ks

s

P d k k b b d d= −∑∫ � � � �

� ��

 

In this case one constructs a covariant quantization 

but there appears an ultraviolet divergence in the vac-

uum energy.  The imposition of normal ordering pre-

scription is required to lead   < 0| : H: | 0 >= 0 . 

 

3 Dirac field quantization in generalized 
krein space 
 

In the new method of quantization both sets of solu-

tions 

.

3
( , ) ( )

(2 )

s s ik x

k

m
U k x u k e

π ω
−=

�

�
 (Positive energy) 

.

3
( , ) ( )

(2 )
=

�

�
s s ik x

k

m
V k x k eυ

π ω
(Negative energy) 

are needed for obtaining  a naturally  renormalized  

theory.  These modes are orthogonal and normalized.   

It is worthwhile to note that in the standard quantiza-

tion of Dirac field, the creation and annihilation of 

positive frequency modes (i.e. Positive energy states) 

are considered in the field operator expansion.   How-

ever, in the new approach the creation and annihilation 

of both positive and negative frequency modes (i.e. 

Positive and negative energy states) are applied for 

the  expansion of field operator. Then, the new field 

operator is defined (subscript K  shal l , hereafter, al-

ways stands  for quantities in generalized  Krein 

space) 

1
( ) ( ) ( )

2
K p n

x x xψ ψ ψ = +  where 

 

3 †

1,2

( ) ( , ) ( , )

( )

=

 = + ∑∫ � �

�
s s

p ks ks
s

x d k b U k x d V k x

positive energy solution

ψ
 

3 †

1,2

( ) ( , ) ( , )

( )

=

 = + ∑∫ � �

�
s s

p ks ks
s

x d k a V k x c U k x

negative energy solution

ψ
 

and hence 
†

3

†
1,2

( ) ( , )1
( )

2 ( ) ( , )=

 + +
=  

+  
∑∫

� �

� �

�
s

ks ks

K s
s

ks ks

b c U k x
x d k

d a V k x
ψ

Similar to the standard QFT one can obtain the non-

zero (equal-time) anticommutation  relation 

{ } 0 0

† 3( ) , ( ) ( ) ,

( , ) (1, 2,3, 4)

′=
′ ′= −

=

� �

x x
x x x xα β αβψ ψ δ δ

α β
 

Creation and annihilation operators are also con-

strained to obey the following anticommutation rules 
† † 3

' '

† † 3

' '

{ , } { , } ( )

{ , } { , } ( )

ssks k s ks k s

ssks k s ks k s

b b d d k k

a a c c k k

δ δ

δ δ

′′ ′

′′ ′

′= = −

′= = −

� � � �

� � � �

� �

� �  
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’ 

’ 

 

† † † †

' ' ' '

† † † †

' ' ' '

† † † †

' ' ' '

'

{ , } { , } { , } { , } 0

{ , } { , } { , } { , } 0

{ , } { , } { , } { , } 0

{ , } {

′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′

′

= = = =

= = = =

= = = =

=

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � �

ks k s ks k s ks k s ks k s

ks k s ks k s ks k s ks k s

ks k s ks k s ks k s ks k s

ks k s

b b b b d d d d

a a a a c c c c

a b a b a b a b

a c a† † † †

' ' '

† † † †

' ' ' '

† † † †

' ' ' '

† †

' '

, } { , } { , } 0

{ , } { , } { , } { , } 0

{ , } { , } { , } { , } 0

{ , } { , } {

′ ′ ′

′ ′ ′ ′

′ ′ ′ ′

′ ′

= = =

= = = =

= = = =

= =

� � � � �

� � � � � � � �

� � � � � � � �

� � � � �

ks k s ks k s ks k s

ks k s ks k s ks k s ks k s

ks k s ks k s ks k s ks k s

ks k s ks k s k

c a c a c

a d a d b c b c

b c b c b c b c

b d b d b† †

' '
, } { , } 0

′ ′
= =� � �

s k s ks k s
d b d

 

The vacuum state | 0> is defined as a state that is 

destroyed by all annihilation operators 

0 0, 0 0

0 0, 0 0

> = > = ∀

> = > = ∀

� �

� �

�

�
ks ks

ks ks

b d k

a c k
 

One “physical” and one “unphysical” particle states 

are obtained by acting the creation operators on vacuum 

state 

†
0 1

†
0 1

†
0 1

†
0 1

>= >= ∀

>= >= ∀

>= >= ∀

>= >= ∀

�
� �

�
��

�
� �

�
��

b
b one physical particle state k
ks ks

c
c one unphysical particle state k

ksks

d
d one physical antiparticle state k

ks ks

a
a one unphysical antiparticle state k

ksks

 

Comparing the  four statements 
† †

,� �b d
ks ks

 are 

called the  creation  operators  of physical one-particle 

and one-antiparticle  states with positive energy, re-

spectively, running forward in time. 

† †
,� �c a

ks ks

 are also called the creation operators  of 

unphysical one particle and one-antiparticle 
with negative energy, respectively, running  back-

ward  in time. 

The commutation relations together with the nor-

malization of the vacuum, < 0 | 0 >= l, lead to posi-

tive norms for both physical and unphysical parts 

3

3

1 1 ( )

1 1 ( )

′
′< > = −

′< > = −

� �

� �

� �

� �

b d

b dk s k s

a c

k s k s a c

k k

k k

δ δ

δ δ

It is seen that the unphysical (negative-energy) states 

for spinor field vise versa of the boson fields’ (which  

have  both positive  and  negative  norms  and  there-

fore  are  defined in Krein space),  are positive-norm  

states  moving forward  in time  (vise versa of antipar-

ticles
l4

). Hence, the space of quantization for spinor 

fields is called generalized Krein space. 

Since the Dirac equation is one degree less than 

the Klein-Gordon equation, therefore the norm of spi-

nor field in generalized Krein space is positive.  How-

ever, the unphysical positive- norm states of spinor 

field are different from physical antiparticles. Physical 

antiparticles (e.g. positron), although having negative 

energy, move backward in time, and therefore they are 

observable particles.  But, unphysical negative energy 

states of spinor field move forward in time and are 

not observable. 

It is noteworthy that the two sets of solutions of the 

scalar and vector (boson) fields are complex conjugate 

of each other.  However, in the case of spinor field there 

is no such relation between them.  It is due to the 

Dirac equation which is not real. 

The calculation of the Hamiltonian and momentum 

operator of Dirac spinor field in terms of the new Fou-

rier  modes defined in generalized Krein space leads 

to 

† † † †

3

† † † †
1,2=

 + + + −
=  

− − −  
∑∫

� � � � � � � �

�

� � � � � � � �

�
ks ks ks ks ks ks ksks

k
s

ks ks ks ks ks ks ks ks

b b b c c b c c
H d k

d d d a a d a a
ω

† † † †

3

† † † †
1,2=

 + + + −
=  

− − −  
∑∫

� � � � � � � �

� � � � � � � �

�� � �
ks ks ks ks ks ks ksks

s
ks ks ks ks ks ks ks ks

b b b c c b c c
P d k k

d d d a a d a a

 

It is immediately seen that the energy and momentum 

of the vacuum state are automatically zero, <0|  H | 

0>= 0  ,   <0|  P |  0>= 0 , and  the  imposition  of 

normal  ordering prescription  is not required.  (This 

prescription is vital for the vacuum energy in the Hil-

bert space quantization.) 

The Feynman propagator of spinor field in stan-

dard quantum field theory is defined as the time-

ordered product of fields 

( , ) 0 ( ) ( ) 0
p

Fi S x x T x xψ ψ′ ′=  

giving 

4
.( )

4 2 2

( , ) ( ) ( , )

(2 )

′− −

′ ′= ∂ + =

+

− + ∈∫

F F

P P

ik x x

S x x i m G x x

d k k m
e

k m iπ

 

which suffers from an ultraviolet  divergence.  The 

time-ordered propagator of spinor field in generalized 

Krein space is defined 

( , ) 0 ( ) ( ) 0
T KK

iS x x T x xψ ψ ′ ′=< >   

yielding 

*1
( , ) ( ) ( , ) ( , )

2

( ) ( , ) (1)

′ ′ ′ = ∂ + + = 

′∂ +

p p

T F F

T

S x x i m G x x G x x

i m G x x

 

or 

( )5 0 † 0 51
( , ) ( , ) ( , )

2

p p

T F F
S x x S x x S x xγ γ γ γ′ ′ ′= +  

In the momentum space for the new propagator we 
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1 

obtain
23,24

 

� � �
†

0 0( ) ( ) ( )
P P

T F FS k S k S kγ γ= −  

1 1
−

− +k m i kε

2 (

=
− −

−

m i

i k

ε

π 2 2 1
) ( )+ − =m k m PP

k
δ

− m
 

where P P is the principal part symbol. It has been 

shown that the time-ordered propagator of the scalar 

field in Krein space is
12,20

 

*

4
.( )

4 2 2

1
( , ) [ ( , ) ( , ) ]

2

1

(2 )

′− −

′ ′ ′= + =

−∫

F F

T p p

ik x x

G x x G x x G x x

d k
e PP

k mπ
 

giving 

22
1 0

0 0
2

0

0

( , ) Re ( , )

( 2 )1
( ) ( ) ,

8 8 2

0

′ ′= =

− +

≥

p

T FG x x G x x

J mm

m

σ
δ σ θ σ

π π σ

σ
        (2)

 

where 
02 ( ) ( )x x x x

µ µ ν ν
µνσ η ′ ′= − − . This func-

tion is singular only on the light cone. However it 

has been shown that the incorporation of quantum 

metric fluctuations removes the singularities of Green’s 

functions on the light cone
25

. In a previous work it 

has been established that the combination of QFT in 

Krein space together with the consideration of quan-

tum metric fluctuations results in QFT without any di-

vergence
12

: 

2

1

22 2
1 00

02 2
1 0

1
( )

8 2

( 2 )
exp ( )

2 8 2

′− = − ×
< >

 
− + 

< > 

T
G x x

J mm

m

π

π σ

σσ
θ σ

σ π σ
  

where >σ< 2

1
 is related  to  the  density  of gravi-

tons.  When σ0   = 0, due to the metric quantum fluc-

tuation  
2

1 0< > ≠σ , and we have 

2

2

1

1
(0)

8 2 16
T

m
G

π

π σ π
= − +

< >
 

Inserting  (2) into (1) the time-ordered  propagator  of 

Dirac spinor field in generalized Krein space is ob-

tained 

2
0

2
1

2
0

2
1

2

1 02 20

2 2 2
1 1 0

2 2 2

0 0 0 0 1 0

2

1 02 2

02 2
1 0

1
( , ) ( )

8

( 2 )

2 2

( ) 2 ( 2 ) 2 ( 2 )
2 2

( 2 )
( )

8 2 2

−
< >

−
< >

′ ′= − ×

  
  + +

< > < >    
  −   

 
 + − +

< > 
 

T
S x x i x x

J m
e m

m

m
m J m J m

J mm
e m

m

µ
µ µ

σ

σ

σ

σ

γ
π

σσπ

σ σ σ

θ σ σ σ σ

σπ
θ σ

π σ σ

 

 

which is free of any divergence.  It should be noted 

that the auxiliary negative-frequency states can not 

propagate in the physical world, and they only play 

the role of an automatic renormalization tool for the 

theory. 

 

4 Conclusions 
 

In standard quantum field theory, to eliminate the di-

vergences that appear in the physical quantities, the 

normal ordering (renormalization) procedure has been 

adopted for free (interacting) fields. However, the di-

vergences seem to disappear once the requirement of 

the positivity of norm and energy is relaxed.  The 

addition of the new unphysical states, thus, leads us to 

the Krein/generalized Krein space quantization for 

boson/spinor fields. In this paper the quantization of 

free spinor field is reformulated in generalized Krein 

space.  Once again it is found that the theory is 

automatically renormalized.  The new method has 

also been applied successfully to reformulate QED in 

Krein space
14

. 

The physical interpretation of the unphysical nega-

tive energy states is not yet clear. How- ever, in the 

case of spinor field one can interpret as the unphysi-

cal particle and antiparticle running in the inverse 

time direction! This case will need a careful consid-

eration, which will be discussed in the coming papers.  

But the most important question is that:  Does this 

quantization only regularize the theory without chang-

ing the physical content  of the theory? 
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