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The result of 2-dimensional Gaussian lattice fit to a speckle 
intensity pattern based on a linear model that includes nearest-
neighbor interactions is presented. We also include a Monte 
Carlo simulation of the same spatial speckle pattern that takes 
the nearest-neighbor interactions into account. These nearest-
neighbor interactions lead to a spatial variance structure on 
the lattice. The resulting spatial pattern fluctuates in value 
from point to point in a manner characteristic of a stationary 
stochastic process. The value at a lattice point in the simulation 
is interpreted as an intensity level and the difference in values 
in neighboring cells produces a fluctuating intensity pattern on 
the lattice. Changing the size of the mesh changes the relative 
size of the speckles. Increasing the mesh size tends to average 
out the intensity in the direction of the mean of the stationary 
process. 

Se presenta el resultado del ajuste de una red gaussiana 
bidimensional a un patrón de intensidades de speckle sobre la 
base de un modelo lineal de interacción de entorno cercano. 
Se incluye una simulación de Monte Carlo del mismo patrón 
moteado que tomando en cuenta la interacción de corto 
alcance conduce a una estructura de varianza espacial de la 
red. El patrón de intensidad espacial resultante fluctúa en 
valores punto a punto de la manera característica de un proceso 
estocástico estacionario. El valor de cada punto de la red es 
interpretado como un nivel de intensidad. Las diferencias 
en los valores en las celdas colindantes producen un patrón 
de intensidad fluctuante sobre la red. Cambiando el tamaño 
de la malla cambian los tamaños relativos de las motitas. El 
incremento en el tamaño de la malla tiende a promediar la 
intensidad hacia la media del proceso estacionario.

PACS: Speckle pattern (42.30.Ms), Spatial Modeling, Brownian motion (05.40.Jc), Stochastic process (02.50.Ey), Monte Carlo methods (02.70.Uu).

I. BROWNIAN MOTION MODELS OF SPATIAL SPECKLE 
PATTERNS IN TIME. 

It is known speckle patterns are fine-granular pattern of 
fluctuation of intensity reflected in a surface resulting of the 
superposition of coherent light like a laser (see Ref. [1]). Fig. 
1 shows an example of speckle pattern obtained illuminating 
a surface of a volatile liquid deposited in a solid plate. The 
fluctuations of the spatial pattern are related to inhomogeneity 
in the scattering centers within the material. The spatial intensity 
distribution of the speckle pattern itself at any moment in time 
can be characterized by the methods of spatial modeling with 
point-to-point correlations. Such spatial modeling is the main 
objective of this paper. 

The idea of characterizing the time dependence of speckle 
patterns by the method of Brownian motion theory has been 
proposed several years ago in Refs. [2] and [3]. Péron et al. make 
use of the fact that the speckle pattern contains information 
about the scattering/diffusion medium because the statistical 
properties of the speckles are related to the optical properties 
of the medium. Péron et al. employ the fractal method to 
approximate the diffusion process.

A stochastic process {Xt,t H 0} is called a Brownian motion 

process if:
  (i) {Xt,t H 0} has stationary independent increments
  (ii) For every t > 0, Xt  is normally distributed
  (iii) For all t, E[Xt] = 0
  (iv) X0 = 0

Fig.1. Speckle pattern obtained illuminating with a laser beam a surface 
of a volatile liquid deposited in a solid plate.

Rev. Cub. Fis. 30, 60 (2013)
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In the model of Péron et al. the effects of autocorrelation lead 
to diffusion and are introduced using the fractional Brownian 
motion model

E X X t tt t
H[( ) ] | |2 1

2
2 1

2− ∝ − ,

where H is the Hurst exponent characterizing the 
autocorrelation in time. For 0 < H < 0.5 the correlations are 
negative, for H = 0.5 there is no correlation, and for 0.5 < H < 1 
the correlations are positive.

Diffusion over time is characterized by the following diffusion 
function

D t E X XF t t t( ) [( ) ]( )∆ ∆= −+
2 .

Ref. [3] uses Monte Carlo simulations of the scattering and 
interfering photon packets to characterize speckle patterns. 
The results are summarized in terms of the speckle contrast 
given by

2
2 2

12
0

2( ) 1 | ( ) | 1
TI

K T g dt
I T T

τβ τ  = − = −  ∫ ,

where T is the integration time and b is the coherence factor. 
The light field is represented with a dynamic part and a static 
part and the function g1(x) is then split into two terms, which 
characterize these partial contributions. The function g1(x) is 
well represented by the stretched-exponential form derived, 
in the case of colloidal suspensions, from diffusing-wave 
spectroscopy (DWS) as

1 0( ) Exp( 6 / ),g τ γ τ τ= −

where γ is a constant near 2 and τ0 is the relaxation time 
characteristic of Brownian motion in the suspension. 

Péron et al. parameterize the speckle pattern in terms of the 
rows and columns of a matrix laid out in a linear array. They 
then substitute the spatial intensity pattern for the temporal 
pattern by examining this linear array. They interpret the 
parameters in the diffusion function in terms of the spatial 
correlations via the Fokker-Planck parameterization: 

2( ) [1 Exp( | | )],F X XD X G X υλ∆ = − − ∆

whererepresenting a spatial analog of the Hurst parameter. 

II. SPATIAL SPECKLE CHARACTERIZATION.

We apply a similar analysis to the speckle data to describe a 
statistical method that incorporates nearest neighbor effects in 
the spatial pattern. Ref. [18] points out that it is not sufficient to 
assume that each sample point in a speckle is independent of 
its neighbors in SAR Speckle Simulation (see Ref. [18]).

Fig. 2 illustrates the cell-to-cell variation in the speckle intensity 
pattern. The spatial correlations are visible to the eye. It is the 
objective of this paper to develop a method of incorporating 
the cell-to-cell correlations of the intensity pattern in a 
2-dimensional Gaussian lattice model.  

Fig. 2. High contrast speckle intensity pattern.

The intensity pattern corresponding to the data of Fig. 2 
is plotted in Fig. 3 (in arbitrary units). The distribution is 
well fit to the Rician shape with parameters I0 = 32.397 and 
r = I0 / Iave = 1.867 (see Eq. (13) in Ref. [19])

0
1( ) Exp 2 ,
ave ave ave

I IP I r I r
I I I

     = − +         
where the second function in the above expression is the 
modified Bessel function I0.

Fig.3. Speckle intensity pattern obtained from the data shown in Fig. 2 
with fit to a Rician distribution superimposed.  

Fig. 4 shows the spatial analog of the temporal Brownian motion 
analysis (based on the Fokker-Planck parameterization) and 
indicates that there is a positive spatial correlation when the 
cells of the intensity pattern are laid out linearly row-by-row 
(spatial Hurst parameter is close to 1). We therefore expect that 
nearest neighbor effects cannot be ignored. As can be seen in 
Fig. 5, there is also a visible auto-correlation in the nearest cells 
in the intensity pattern. 

We now turn to a spatial analysis of the speckle based on a 
full lattice model including nearest neighbor lattice effects in 
order to determine correlation parameters associated with the 
underlying surface creating the speckle pattern.
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Absolute Pixel Separation
Fig.4. Spatial analog of spatial variance: DF(DX) versus Y = Xβ+ Zu + fr  
(vertical scale is arbitrary).

Pixel Separation

Fig.5.Row-wise spatial auto-correlation as a function of Pixel Separation 
(vertical scale is arbitrary).

3. MIXED LINEAR MODELS AND LATTICES.

In the following, we denote the transpose of a matrix R by R'. 
We also denote column vector in component form by square 
brackets, v = [a,b,c,..], and the corresponding row vectors with 
parentheses, v'= (a,b,c…).

A spatial variable on a rectangular lattice is represented by uij 
which gives the value of the variable u at the i-th row and j-th 
column. The effects of neighbors on the value for u at i, j can be 
summarized in the following form.

( ), , ,,
,i j r s i r j s ijr s

u uα σε− −∈Ω
= +∑                        	                 

(1)

where the εij are independent N(0,1) normal deviates and Ω  
is a finite index set for r and s which limits the extent of the 

influences from distant parts of the lattice. Eq. (1) can be recast 
into matrix form

u = Δu + ε ,                                  			                 (2)

where E[ε] = 0 and var[ε] = σ2I . The above is used as a model for 
the surface that produces the speckle pattern and correlations 
are specific to that surface. 

The form of Eq. (2) implies that the variance of u is given by 

var [u] = σ2 (I – Δ)-1[(I – Δ)-1 ]´

or that the inverse matrix is

G-1 = σ-2 (I – Δ) (I – Δ)´.  			                                       (3)

Linear models, including mixed linear models, have found 
widespread use in statistical investigations. The linear model, 
though additive, is frequently flexible enough for real situations 
as an approximation around the mean. The mixed linear model 
is represented by: 
Y = Xβ + Zu + εr.                                           		                  (4)

Where Y is a vector of observations, β is a vector of fixed effects; 
u is vector of random effects and εr is the observational residual 
error. The matrices X and Z are incidence matrices that relate 
the various effects to observations. 

The first moments for the random effects (their expectations) 
are E[u] = 0 and E[εr] = 0, and the variance-covariance structure 
is given by var[u] = G, var[εr] = R and cov[u,εr] = 0. The linear 
model can be introduced on a lattice in which case both Eq. (2) 
and Eq. (4) come into play simultaneously. In this case
G = σ2 (I – Δ)-1[(I – Δ)-1]’
R = σ1

2I.

Additional assumptions are needed to implement maximum 
likelihood or computer simulation, and generally Y, u, and εr 
are taken as multivariate normal. As indicated in Goldberger 
(Ref. [5]), the Best Linear Unbiased Prediction (BLUP) of u is 
found by evaluating

û = GZ'V-1[Y-X β̂ ],

where
var( ) ´ ,y= = +V ZGZ R

     
             			                  (5) 

and β̂  where is the Best Linear Unbiased Estimate (BLUE) 
of the fixed effects obtained by the Generalized Least Squares 
(GSE) problem

1 1ˆ( ´ )[ ] [ ´ ].β− −=X V X X V Y
			                

(6)

These equations can be reformulated so that the solutions can 
be obtained directly from the mixed model equations (Ref. [6])

1 1 1

1 1 1 1

ˆ´ ´ ´
.

´ ´ ´ˆ
β− − −

− − − −

    
=    +    

X R X X R Z X R Y
Z R X Z R Z G Z R Yu 	                 

 (7)

Associated with the mixed model equations is the Mixed 
Model Matrix
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1 1 1

1 1 1 1

1 1 1

´ ´ ´
´ ´ ´ .
´ ´

− − −

− − − −

− − −

 
 = + 
  

X R X X R Z X R Y
M Z R X Z R Z G Z R Y

Y R X Y R Z YR Y
                            

(8)

The log-likelihood for the Multivariate Normal (MN) applied 
to the lattice model is given by (see Ref. [15])

11 1ln(MN) const ln | | ( )´ ( )
2 2

.Vβ β−= − − − −V Y X Y X
 
(9)

The maximum likelihood estimates of β and the dispersion 
parameters (R and G) are found by maximizing the log-
likelihood. Estimates of the dispersion parameters can be 
badly biased by small-sample errors induced by the estimation 
of. This is a serious problem when the dimension of β̂  is large 
relative to the information available to estimate β.

To overcome this problem, Patterson and Thompson (Ref. [7]) 
introduced Restricted Maximum Likelihood (ReML), where 
the dispersion parameters are found by maximizing

1

1

1 1ln(ReMN) const ln | | ln | ´ |
2 2

1 ˆ ˆ( )´ ( ).
2

β β

−

−

= − −

− − −

V X

Y X V Y X

XV

	            

(10)

Where β̂  is the solution obtained by GSE, Eq. (6). ReML 
has the advantage of eliminating the β parameters from the 
likelihood. This is especially useful in cases where one wants 
to concentrate on minimizing the deviations from a common 
mean, without explicitly finding that common mean. Ref. [8] 
states, “In contrast to conventional maximum likelihood 
estimation, ReML can produce unbiased estimates of variance 
and covariance parameters.” Harville (Ref. [9]) derived the 
likelihood in Eq. (10) to treat the “error contrasts” which are 
found by taking a complete set of linear combinations of the 
observations which are sufficient to remove the effect of β while 
leaving the maximal amount of information for the purpose 
of ReML. An early review of ReML can be found in Ref. [10]. 
More recent reviews can be found in Ref. [11] and [12].

The above ReML likelihood can be put into an alternative form
1 1 1 1ln(ReMN) const ln ln ,
2 2 2 2

= − − − −
M

R G C
C

where C is the coefficient matrix in Eq. (7), and M is given by 
Eq. (8).

In dealing with lattice models, it is often the case that G is a 
dense matrix, but G-1 is sparse. Therefore it is more expedient 
to work with Eq. (3) in terms of G-1, than with G directly. The 
term “½ln|R|” is available by analytical methods because of 
the simple structure assumed for R (R = σ2I in most cases). 
The “½ln|G|” term can be obtained by performing a Cholesky 
decomposition on G-1 followed by using the diagonal 
elements from the Cholesky decomposition to compute the 
determinant |G-1| and subsequently using the relationship that 
G = 1/|G-1|. Ref. [17] has shown that by performing Cholesky 

decomposition on M above, then the expression
1 1
2 2

− −
M

C
C

can also be obtained. 

Numerical methods exist for calculating the first and 
second derivatives of all these functions. The Hessian can be 
constructed and an iterative procedure involving the Newton-
Raphson method can be used to maximize the likelihood.

It is well known that the Cholesky decomposition runs to 
completion with any matrix that is symmetric and non-
negative definite. In the event of singular covariance structure, 
it is possible to generalize this method (Ref. [4]).

The likelihood function is derived from elements of the 
Cholesky decomposition, and so there is nothing else that 
is needed to perform ReML but to find the derivatives that 
permit optimization by the iterative Newton-Raphson 
technique applied to the derivatives of the ReML likelihood. 
These derivatives come automatically with the Cholesky 
decomposition (see Ref. [13], [14]) and so there is little beyond 
constructing the matrices M and G-1 and their Cholesky 
decompositions, that must be considered to describe ReML. 
The pseudo-code for the differentiation of the Cholesky 
algorithm and directions for how to use it are to be found in 
Ref. [17].

IV. RESULTS OF FIT AND SIMULATION WITH 
AUTOCORRELATIONS. 

We used the above ReML method above to fit an empirical 
speckle pattern from data, for example, see Fig. 2. The ReML 
method was implemented on a lattice model using the following 
nearest-neighbor relationship in the intensity pattern, which is 
based on Eq. (4) for the data and Eq. (2) for the model

, , ,

, 1, 1, , 1 ,[ ]
i j i j r i j

i j i j i j i j i j

µ ε
ρ ε+ − −

= + +

= + + +

Y u

u u u u 			            
(11)

The first line of Eq. (11) contains the model for the data which 
contains the mean μ (corresponding to X = 1 in Eq. 4), the 
lattice contribution ui,j, the error on the residual components 
εi,j. The first term on the second line of the Right-Hand Side of 
Eq. (11) contains the structure of Δ, which can be substituted 
into Eq. (3) in order to construct G-1. This G-1 together with 
R-1 can be used to construct the Mixed Model Matrix in Eq. 
(8) and the ReML likelihood function. This ReML likelihood 
can subsequently processed through the Newton-Raphson 
numerical method to find the best fit. 

The original speckle pattern in Fig. 1 was digitized into a 
251 x 251 grid of cells. In order to simplify the application of the 
Gaussian spatial lattice model the original grid was compressed 
to a 63 x 63 grid pattern by coarsening the grid pattern a factor 
of 4 in both horizontal and vertical dimensions and combining 
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the intensity values. Then the total intensity in the course grid 
was obtained by averaging the contribution from the original 
16 cells contained within it. 

The Average Intensity pattern of the data is shown in Fig. 6 with 
a fit to a Rician distribution yielding the values I0 = 9.471 and 
I0/Iave = 7.738. 

Fig. 6. Average Intensity Pattern of data in condensed grid.

The averaged data intensity distribution appears slightly 
more Gaussian in shape because of the addition of intensity 
contributions as expected from the Central Limit Theorem. 
The Mean of the averaged patter is 82.5 and the width is 36.7 
units.

Fig. 7. Simulated Average Intensity Pattern of Gaussian Lattice Model. 
Superimposed curve is a fit to a Rician. The simulation produces an 
intensity pattern whose shape is more Gaussian in shape than the data. 

Our Gaussian spatial lattice fit to the data yielded ρ = 0.111 and 
a sample variance ratio of 0.246. There is a positive correlation 
in the pixel intensity pattern from nearest neighbor cells in 
qualitative agreement with the positive spatial Hurst parameter 

given in in Fig. 4. 

In order to correctly simulate such a pattern this positive 
correlation must be taken into account (see Ref. [18]). The 
average intensity pattern for the simulated speckle pattern 
using the Gaussian spatial lattice is shown in Fig 7.

The simulated average intensity appears more Gaussian in 
shape with mean = 82.7 and width = 39.7 units, in agreement 
with the original data. Also show in Fig. 7 is a fit to a Rician 
with parameters similar to the data, although the fit is not as 
good as compared with Fig. 6, the fitted parameters are similar. 

Fig. 8 compares the autocorrelation of the averaged intensity 
pattern of the data with that of the simulated data.

Fig. 8. Autocorrelation for data intensity pattern compared with the 
simulated Gaussian Lattice. Vertical scale is arbitrary units but has been 
suppressed at 0.01 to show detail. 

The data is shown in red and the peak of the autocorrelation 
at 0 is in agreement with the shape of the simulation shown in 
green. 

With the fit done we were also able to use Monte Carlo 
techniques to simulate similar patterns including the correlated 
spatial structure as can be seen in Fig. 9 (the vertical scale is 
arbitrary based on the largest intensity).

Fig. 9. Simulated speckle pattern in the intensity based on the Gaussian 
lattice model.

The technique for simulation was based on generating N (0,1) 
Gaussian deviates, then scaling them into the εi,j of Eq. (11), and 
transforming those into simulations of ui,j of Eq. (11) utilizing 
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the sparse Cholesky decomposition of G-1. The estimate of μ was 
found by solving the linear system of Eq. (7) using thesparse 
Cholesky decomposition of C. εr i,j was simulated from N (0,1) 
Gaussian deviates and then scaled.

The nearest neighbor correlation, ρ, is characteristic of the 
substrate producing the speckle pattern and is also a function 
of the grid size used in the analysis of the gaussian lattice model. 
When the simulated speckle pattern was itself run through 
a subsequent fit to a gaussian lattice model, the value of ρ = 
0,119 and a sample variance ratio of 0.177 was obtained. The ρ 
parameter is very stable and the variation in the parameters is a 
measure of the accuracy of the fit. 

The Gaussian lattice model can be expanded to include 
vertical and horizontal systematic effects in the illuminated 
substrate and may be useful in characterizing classes of 
substrates.

V. CONCLUSION

The method described in this the paper provides a way to analyze 
an actual speckle intensity pattern using a 2-dimensional spatial 
pattern on a lattice taking into account the nearest neighbor 
effects. The information can be summarized using the ReML 
method to estimate the parameters in the statistical model. 
The parameters characterize the statistical properties of the 
spatial speckle pattern, and estimating them permits statistical 
inferences having to do with variance and spatial correlations 
which are necessary to implement an accurate simulation 
(e.g., for SAR speckle simulation see Ref. 18). Completely new 
speckle patterns can be simulated from the spatial model that 
sets the parameters equal to the estimated parameters found 
from one data set.
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