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A fast and accurate numerical method for computing the
hydrodynamic Green’s function will be presented. The method is
based on writing the hydrodynamic Green’s function in terms of an
auxiliary analytic function which is computed by solving a boundary
integral equation with the generalized Neumann kernel. Application
of the presented method to compute the stream function of fluid
motion due to a finite number of point vortices in an incompressible
fluid on planar multiply connected domains of high connectivity with
complicated boundaries will be presented.

Sera presentado un método rapido y preciso para calcular la
funcion de Green hidrodinamica. El método se basa en escribir
la funciéon de Green hidrodinamica en términos de una funcion
analitica auxiliar, que es calculada resolviendo una ecuacion
integral con condiciones de frontera usando el kernel de Neumann
generalizado. Se montara una una aplicacién del presente método
para calcular la funciéon de flujo para el movimiento del fluido
debido a un numero finito de vortices puntiformes en un fluido
incompresible, sobre dominios planos multiplemente conexos de
alta conectividad, con fronteras complicadas.

PACS: Vortex dynamics, 47.32.C-; Potential theory, 02.30.Em; Integral equations, 02.30.Rz.

I INTRODUCTION

Suppose that R is a multiply connected domain in the
extended complex plane C U {o}. The domain R can be
bounded of connectivity m + 1 or unbounded of connectivity
m. For bounded R, the boundary I' = dR consists of m + 1
closed smooth Jordan curves I'y, Iy, ..., I, where the curve
I'y enclose the other curves I'y,...,I',, (see Figure 1). For
unbounded R, I' = dR consists of m closed smooth Jordan
curves I'y,..., I, and oo € G (see Figure 2). The orientation
of T is such that R is always on the left of I'.

Lin [1,2] in 1941 considered a special Green function for
multiply connected domains in the complex plane which
was named by Flucher & Gustafsson [3] as the hydrodynamic
Green’s function (see also [3-5]). Since then, the hydrodynamic
Green’s function plays a key role in solving several fluid
dynamic problems in multiply connected domains in the
complex plane (see e.g., [3-7]).

Figure 2. An unbounded multiply connected domain R of connectivity m.
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The hydrodynamic Green’s function G(x,y;xo, o) with
respect to the two points (x, y) and (xo, o) in the domain R is
defined as in the following definition from [1] (see also [3-5]).
In this paper, for simplicity, we shall write G(z; zo) instead of
G(x, y; x0, Yo) where z = x + iy and zp = x¢ + iyo.

Definition 1 The hydrodynamic Green’s function G(z;zo) is
defined with respect to two points z = x + iy and zg = xo + iyp in
the domain R by the following three conditions.

1. The function

)

1
8(z;20) = —G(z; 20) — o log |z — z|

is harmonic with respect to (x, y) throughout the domain R
including at the point (xo, Yo).

2. If g—g denotes the normal derivative of G on a curve (with
z = x + 1y as a variable) and ds denotes an element of arc,

then
G(z;z0) = cpoverly, k=1,2,...,m, (2a)
g—ids = 0, k=1,2,...,m, (2b)
T
where c1,¢Ca, ..., Cy are real constants.
3. (a) If Gis bounded, then
G(z;29) =0 over I. (3a)

(b) IfRis unbounded, then over a very large circle of radius
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to, the function G behaves as follows

1 1
Clzz) = —Elogro+0(a), (3b)
oG 1
g = O[%], (3C)
G 1 1
on ‘ﬁo*o(g)' (3)

where ‘29—(53 is the tangential derivative along the circle.

Theorem 1 (Lin [1]) The function G(z;z9) defined by the
conditions in Definition 1 exists uniquely and satisfies the
reciprocity property

G(z;z0) = G(z0; 2)- 4)

An explicit representation of the hydrodynamic Green’s
function G(z;zp) for multiply connected circular domains
has been given in [4,6,8,9]. This explicit representation
is described in terms of the Schottky-Klein prime function
associated with circular domains [10]. If the conformal
mapping from the general multiply connected domain R
onto a circular domain is known, then the method presented
in [4, 6] can be used to calculate the hydrodynamic Green’s
function in the domain R. However, computing the
conformal mapping from the general multiply connected
domain R onto a circular domain is not easy. In fact, it is more
difficult than computing the hydrodynamic Green’s function
in the original domain R (see e.g., [11-13]). A boundary
integral method for computing the function G(z;zo) for the
coastline multiply connected domain has been presented
in [7]. The method is based on computing the conformal
mapping from the original coastline domain onto the unit
disk with circular slits. The hydrodynamic Green'’s function
in the domain R is then computed from the conformal
mapping.

This paper presents a new numerical method for computing
the hydrodynamic Green’s function G(z;zp) for general
bounded or unbounded multiply connected domains R. The
method is based on using a boundary integral equation
with the generalized Neumann kernel to compute G(z;zo)
in the domain R without using conformal mappings.
The presented method has the ability to compute the
hydrodynamic Green’s function for domains with high
connectivity, domains with complex geometry, domains with
close-to-touching boundaries, and domains with piecewise
smooth boundaries. As an application, we use the presented
method to compute the stream function of fluid motion due to
a finite number of point vortices in an incompressible fluid on
planar multiply connected domains including a real-world
problem domain.

In the method presented in [7], both the kernel and the
right-hand side of the integral equation depends on z.
While, in the method presented in this paper, only the
right-hand side of the integral equation depends on z,. This
is a very important advantage of the presented method. For
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example, to compute the hydrodynamic Green’s function
G(z;zj) forlpintsz;,i = 1,2,...,1, using the method presented
in [7], we have to solve [ different integral equations.
However, for the presented method, we need to solve only
one integral equation but with [ different right-hand sides.
If a proper method for solving linear systems with multiple
right-hand sides is used to solve the discretized linear system
of theintegral equation (see e.g., [14]), then the computational
cost of the presented method will be much less than the
computational cost of the method presented in [7].

Another important Green’s function is the classical Green’s
function which is defined differently from the hydrodynamic
Green’s function. Crowdy & Marshall [8] called the
hydrodynamic Green’s function as the modified Green’s
function and the classical Green’s function as the first-type
Green'’s function (see also [9]). For a numerical method based
on the integral equation with the generalized Neumann
kernel for computing the classical Green’s function on doubly
connected domains, we refer the reader to [15,16].

II THE GENERALIZED NEUMANN KERNEL

In this section, we review the definition of the generalized
Neumann kernel on multiply connected domains. For more
details on the generalized Neumann kernel, we refer the
reader to [17-23].

The curve T; is parameterized by a 2n-periodic
complex-valued function 7;(t) with t € J; = [0, 27t]. The total
parameter domain | is the disjoint union of the intervals ]y
(for bounded R), J1,...,Jm. We define a parameterization of
the whole boundary I" as the complex function 7n(t) defined
on | by

no(t), te€Jo (for bounded R),
m (t)/ te ]l/

ne=1 . ®)
77111(t)/ t € I

Any real-valued or complex-valued function ¢(n) defined on
the boundary I' can be interpreted via ci)(t) = (1)) as a
2n-periodic function of the parameter ¢ on J, and vice versa.
So, in this paper, we shall not distinguish between ¢(t) and
¢(n(t). If h(t) is a piecewise constant function defined on |
by

h(t)=h; for te];

where /i is a real constant for j = 0 (for bounded R),1,2,...,m,
then for simplicity, the function h(tf) will be written as

h = (ho,h,hy, ..., hy) for bounded R and h = (hy, hy, ..., hy)
for unbounded R.
We define a complex-valued function A on T by
_ | nt)=—a, forbounded R,
A = { 1, for unbounded R. ©)
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The generalized Neumann kernel formed with A and 7 is
defined by [17,18]

_ Ais) ') )
b= (A(t) 10 -10) @
We define also a kernel
_ A(s)  1'(b)
M= (A(t) n(t)—n(s)) ®

To ensure the continuity of the generalized Neumann kernel,
we assume that the boundary T is a C? smooth curve, i.e.,
we assume that n”/(t) is continuous and n'(f) # 0 on J.
However, as explained in [19, 22], the method presented
in this paper can be used even for domains with piecewise
smooth boundaries.

Lemma 1 ([18]) (a) The kernel N is continuous with

T A
v A )

(b) When s, t € J; are in the same parameter interval J;, then

N(t,t) = 1 %Im

©)

1 —t
—— cot it + M;y(s, t)

M(s,t) = =5 cot — (10)

with a continuous kernel My which takes on the diagonal the values

N’
')

A'(#)

Mi(t,t) = (1 Re ——

Thus, the integral operator

Nu(s) = fN(s, Hu(t)dt (12)
]

is a Fredholm integral operator and the operator

My(s) = f N(s, Hu(t)dt (13)

is a singular integral operator.

Theorem 2 ([24]) If A is an eigenvalue of N, then A € [-1, 1).

IIT AN INTEGRAL EQUATION FOR THE
HYDRODYNAMIC GREEN’S FUNCTION

This section presents a boundary integral equation for
computing the hydrodynamic Green’s function G(z;z) for
bounded and unbounded multiply connected domains R.
The kernel of the integral equation is the generalized
Neumann kernel discussed in the previous section and the
right-hand side of the integral equation depends on the point
zo. By solving the integral equation, we obtain the boundary
values of an axillary analytic function f. The values f(z)
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for interior points z € R can be computed by the Cauchy
integral formula. By obtaining the values of the axillary
function f(z), we obtain the values of the hydrodynamic
Green’s function G(z;z9). The numerical implementation
of the integral equation will be given in the forthcoming
sections.

Suppose that a point z is fixed in R and the function y is
defined by

Y0 = 5 logIn(t) - =, (19

Then, we have the following theorem from [20,21].

Theorem 3 For the functiony given by (14), there exists a unique
piecewise constant function h = (ho, hy, hy, ..., hy) and a unique
2m-periodic Holder continuous function u such that

A f(n(t)) = y(t) + h(t) +iu(t),

are boundary values of an analytic function f in R with f(oo) =
for unbounded R. The function u is the unique solution of the
integral equation

te], (15)

(I-Nju =~ (16)
and the piecewise constant function h is given by
h= My — (- N)y]/2. (17)

It is clear that the function y depends on zy, then so are the
functions h and u. Hence the function f(z) depends also on
zp. One can write f(z;z9) to emphasize the dependence of
the function f on zy. However, for simplicity of notation, we
write f(z) instead of f(z; zo).

III.1  Bounded R

The function

(z=a)f(z) = ho
is analytic in R and its boundary values on I' satisfies
(1(8) = ) f((t)) — ho = () + h(t) + iu(t),
— hy, ..

te], (18)
where ﬁ(t) =
a)f(2)] + ho

satisfies the assumptions on the function g(z;zp) in
Definition 1, i.e.,

0, ., — hg). Hence, the function

—Re[(z—a

3(z;z0) = —Re[(z — a) f(z)] + ho. (19)

Then the hydrodynamic Green’s function G(z; zp) is given by

G(z;20) = Re[(z — ) f(z)] — ho — % log |z — zl. (20)

It is clear that, the function G(z;zy) defined by (20) for
bounded R satisfies the conditions of Definition 1.

ARTICULOS ORIGINALES (Ed. T. Poeschel)



II1.2  Unbounded R

The function f(z) is analytic in R with f(c0) = 0 and its
boundary values on I satisfies

f(n(®) =y (&) + h(t) +iu(t),
where h(t) = (I, ...
8(z;z0) = —Re[f(2)]

satisfies the assumptions on the function g(z;zp) in
Definition 1. Hence the hydrodynamic Green’s function
G(z; z0) is given by

te], (21)

,hy). Thus, the function

(22)

Gz 20) = Rel f)] - 5 loglz ~ zl, 23

which satisfies the conditions of Definition 1.

IV POINT VORTICES

We consider the problem of computing the stream function of
fluid motion due to / point vortices in the multiply connected
domain R. We have the following theorem from Lin [1] (see
also [4]).

Theorem 4 (Lin [1]) If [ vortices of strengths x; (j = 1,2,...,1)
are present in an incompressible fluid at the points z; (j =
1,2,...,1) in the above domain R, the stream function of fluid
motion is given by

!
Y72, 2) = Pol2) + )| 156 2)) (24)
j=1

where G is the hydrodynamic Green’s function and y(z) is the
stream function of the motion due to outside agencies, independent
of zj and x;.

In this paper, we shall consider only the stream function of
fluid motion due to the [ point vortices in the absence of
motion due to outside agencies, i.e. we shall assume that
Yo(z) = 0. The stream function of fluid motion is then given

by

I
W(z;21,22,...,21) = Z k;iG(z; z)). (25)
=1

V NUMERICAL IMPLEMENTATION

The boundary integral equation (16) can be solved accurately
by the Nystrom method with the trapezoidal rule [25,26]
(see [20-23] for more details). For j = 0 (for bounded
R),1,2,...,m, each interval J; is discretized by n equidistant
nodes. Hence, the total number of nodes in the total
parameter domain | is (m + 1)n for bounded R and mn
for unbounded R. For domains with piecewise smooth
boundaries, singularity subtraction [27] and the trapezoidal
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rule with a graded mesh [28] are used. By discretizing
the integral equation (16) by the Nystrom method with the
trapezoidal rule, we obtain (im + 1)n X (m + 1)n linear system
for bounded R and mn X mn linear system for unbounded
R. These linear systems are solved by the generalized
minimal residual (GMRES) method [29]. Each iteration of
the GMRES method requires a matrix-vector product which
can be computed using the Fast Multipole Method (FMM) in
O(mn) operations [30,31].

By Theorem 2, the eigenvalues of the operator N are real in
the interval [-1,1). Since N is compact, the only possible
accumulation point of the eigenvalues is 0 [26, p. 40]. Thus,
the eigenvalues of the operator I — N are real in the interval
(0,2] with 1 as the only possible accumulation point of these
eigenvalues. Hence, for sufficiently large 1, the eigenvalues
of the matrix of the discretized linear system are real in
the interval (0,2] and clustered around 1 (see [23] for more
details). Clustering the eigenvalues of the matrix of the
linear system around 1 often results in rapid convergence
of the GMRES method. Usually, it will need few iterations
for convergence. No preconditioning procedure is required.

In the numerical examples below, the MATLAB function FBIE
in [22] will be used to obtain approximations to the unique
solution u of the integral equation (16) and the function h
in (17), respectively. In the function FBIE, the discretized
linear system is solved using the MATLAB function gmres
where the matrix-vector product is computed using the
MATLAB function zfmm2dpart in the MATLAB toolbox
FMMLIB2D developed by Greengard and Gimbutas [30].
In the MATLAB function FBIE we choose the parameters
iprec=5 (i.e., the tolerance of the FMM is 0.5 x 1071%),
restart=10 (i.e., the GMRES method is restarted every 10
inner iterations), gmrestol=10"" (i.e., the tolerance of the
GMRES method is 107'%), maxit=10 (i.e., the maximum
number of outer iterations of GMRES method is 10). The
MATLAB function FBIE requires O(mnlogn) operations.
Hence, the computational cost for solving the integral
equation (16) and computing the function i in (17) is
O(mnlog n) operations. For more details, we refer the reader
to [22,23,30].

By obtaining approximations to p and h, we thus obtain
approximations to the boundary vales of the function f by

_y+h+ip
f_ A .

The values of the function f for interior points z € R can be
computed by Cauchy’s integral formula. A fast and accurate
method to compute the Cauchy integral formula has been
given in [22,23] (see also [32,33]). The method is based on
using the MATLAB function zfmm2dpart in [30]. To compute
the Cauchy integral formula at p interior points, the method
requires O(p + mn) operations [22].

Hence computing the values of the hydrodynamic Green’s
function at p interior points in R requires O(mnlogn)
operations for computing the boundary values of the
auxiliary function f(z) and O(p + mn) operations for
computing the Cauchy integral formula.
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VI NUMERICAL EXAMPLES

We consider three numerical examples to validate the ability
of the presented method to handle wide range of multiply
connected domains. In the first example, we consider an
unbounded multiply connected circular domain R. In the
second example, we consider a bounded multiply connected
domain R with piecewise smooth boundaries. Finally, we
consider in the third examples a real-world unbounded
multiply connected domain R with high connectivity and
complicated boundaries. In all examples, we consider an
even number [ of vortices at the points z; for j = 1,2,...,L
Half of these vortices have strengths +1 and the other
half have strengths —1. For bounded R, we choose p
equidistant points in the domain R. For unbounded R, we
choose p equidistant points in a small part of the domain R
surrounding the boundary I'. Then, we compute the values of
the hydrodynamic Green’s function G(z; z;) at these p points
z for each z;. The stream function of fluid motion due to
the I point vortices in the absence of motion due to outside
agencies is then computed from (25). For each example, we
plot the streamlines of the stream function and compute the
number of GMRES iterations and the total CPU time required
for computing the values of G(z;z)) at the p points z for each
Zj.

Example 1 The domain R is an unbounded multiply connected
circular domain of connectivity 103 exterior to 103 circles.

For this example, the number of nodes in the discretization
of each boundary component is n = 1024, the total number
of nodes is 105472, the number of point vortices is | = 20, and
the number of equidistant points chosen in the domain R is
p = 880098. The GMRES method needs around 22 iterations
for converges (see Figure 8 (top)). The streamlines of the
stream function corresponding to the 20 point vortices are
shown in Figure 3.

Figure 3. The streamlines for Example 1.

Example 2 The domain R is a bounded multiply connected
domain of connectivity 5 interior to a square and exterior to 4
other squares.
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For this example, the number of nodes in the discretization
of each boundary component is n = 4096, the total number
of nodes is 20480, the number of point vortices is I = 8, and
the number of equidistant points chosen in the domain R is
p = 906789. The GMRES method needs around 26 iterations
for converges (see Figure 8 (middle)). The streamlines of
the stream function corresponding to the 8 point vortices are
shown in Figure 4.

Figure 4. The streamlines for Example 2.

Example 3 In this example, we consider application of the
presented method to a real world problem. We consider the
unbounded domain R of connectivity 210 exterior to an artificial
archipelago located in the waters of the Arabian Gulf, 4 kilometres
off the coast of Dubai, and known as “The World Islands” (see
Fig. 8.15 in [22]).

An aerial image of “The World Islands” is shown in Figure 5.
The boundaries of the islands extracted from the aerial image
are shown in Figure 6. The boundaries are parameterized
by trigonometric interpolating polynomials. It is clear
from Figure 6 that the boundaries are very close to each
other, but they do not touch each other. For generalized
Neumann kernel formed with the function A given by (6),
the presented method gives accurate results even for domains
with close-to-touching boundaries (see [22]). However, we
need to use large values of nodes n. For this example,
we use n = 8192 so the total number of nodes is 1720320.
The number of point vortices is | = 16 and the number of
equidistant points chosen in the domain R is p = 854648.
Since the boundaries are very close to each other and
have complex geometry, the GMRES method requires more
iterations for convergence. It converges after around 90
iterations which is acceptable for such complicated domains
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(see Figure 8 (bottom)). The streamlines of the stream
function corresponding to 16 vortices are shown in Figure 7.

Figure 5. An aerial photograph of “The World Islands” for Example 3.

Figure 6. The boundaries of the islands extracted from the image of “The
World Islands” for Example 3.

Figure 7. The streamlines for Example 3 obtained with n = 8192.
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Figure 8. The number of GMRES iterations and the total CPU time required
for computing the values of the hydrodynamic Green’s function G(z;z;) at
p points z in the domain R for each zj, j = 1,2,...,1, for Example 1 (top),
Example 2 (middle), and Example 3 (bottom).

VII CONCLUSIONS

This paper presented a new fast and accurate numerical
method for computing the hydrodynamic Green’s function
in multiply connected domains. The method is based on the
boundary integral equations with the generalized Neumann
kernel. By solving the integral equation, the hydrodynamic
Green’s function in the domain R is computed by the Cauchy
integral formula. Numerical examples were presented to
illustrate that the presented method can be used even for
real-world problem domains with complex geometry and
high connectivity.
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