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Rays paths follow a complex trajectory through the human

crystalline. This is due to the changes in refractive index with

position: crystalline is a GRIN lens. To calculate these trajectories

approximate methods are often employed. In this contribution our

aim is to compare two numerical methods: the first one based

in solving the vector differential equation of the ray paths, while

the second one is based on Fermat’s principle. For each method

different numeric schema are applied, and the results compared

based on precision and computing easiness. We found that the

most efficient procedure is a Runge-Kuta algorithm with adaptive

step for integrating the differential equation derived from Fermat´s

principle. This procedure will be applied in a ray tracing computer

program and also in an optimization algorithm to determine the

refraction index distribution inside crystalline.

La luz sigue una trayectoria compleja al atravesar el cristalino.

Esto se debe al cambio del ı́ndice de refracción con la posición:

el cristalino es una lente GRIN. Para calcular dicha trayectoria

con frecuencia se emplean métodos aproximados. El objetivo de

este artı́culo es comparar dos métodos: el primero basado en la

solución de la ecuación diferencial del rayo y el segundo basado

en el principio de Fermat. En cada caso se emplean dos esquemas

numéricos para resolver la ecuación diferencial correspondiente.

Los resultados son comparados teniendo en cuenta la exactitud y el

costo computacional. Se determinó que el método más eficiente es

el basado en la resolución de la ecuación derivada del principio de

Fermat mediante un esquema de Runge-Kutta de paso adaptativo.

Este método será usado en un programa informático de trazado de

rayos que se encuentra en desarrollo y como parte de un algoritmo

de optimización para determinar los parámetros que caracterizan

la distribución de ı́ndice de refracción en cristalinos.

PACS: Geometrical optics 42.15.-i, Gradient index (GRIN) devices 42.79.Ry, Ophthalmic optics 42.66.Ct, Eye 42.66.-p, Numerical

methods (mathematics) 02.60.-x

I. INTRODUCTION

The mechanism of vision in humans is a rather complex
process that includes the coordinated work of cornea,
crystalline and controlling muscles, in order to form an in
focus image on the retina (see fig. 1).

Figure 1. Schematic of human eye: anterior and posterior corneal surfaces
(1, 2), iris (3), anterior and posterior crystalline surfaces (4, 6), plane
containing crystalline nucleus (5), retina (7).

Particularly the crystalline plays a key role, firstly through
accommodation, i. e. the variation of its focal length due to

changes in thickness and curvature of its surfaces [1]. But also
the peculiar density distribution of proteins both in radial
and axial directions creates a gradient of the refraction index:
crystalline is a GRIN lens [2, 3]. This fact makes difficult the
exact calculation of ray paths through crystalline.

An additional problem is related with difficulties in the
determination of the distribution of the refraction index.
Firstly, because the study of in vivo refraction index
distribution is only attainable using MRI [4]. Secondly,
because GRIN‘s parameters change with age [5]. This
provokes that frequently the GRIN distribution is substituted
in calculations by an average refraction index [6, 7] with
the correspondingly lost in accuracy. So, a method for
determining the distribution function is of paramount
importance. There is an indirect method of measuring this
distribution in vitro. Let us suppose that we measure the
incoming and outgoing directions of a light ray in an
isolated crystalline. Then, using an optimization algorithm,
we could find the distribution of refraction index that better
reproduces the experimental details. Clearly, for doing this
we need a method to calculate the trajectory knowing the
index distribution. Though there are methods to make the
analytical tracing of light rays in the paraxial region [8],
approximate methods are more often employed.

A widely used approach to calculate ray paths through
human lens (due to its simplicity) is to consider a shell model
[2,3,9]. The continuous index distribution is substituted by a
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discrete increment of the refraction index from the surface to
the core, dividing the crystalline in shells, each one having a
constant value of refraction index, equal to that of its outer
surface. This model reproduces well the overall behavior
of human lens [9] when there is no need of great accuracy.
Another approach, computationally more expensive, but also
more exact, is to solve a differential equation describing the
ray trajectories. Here we consider different numeric schema
for a widely applied GRIN model named bi parabolic model
[10] used by some of us in a previous work [11].

We solved the model by two different methods: firstly using
the eikonal equation and secondly with the aid of Fermat´s
principle. In both cases the resulting differential equation
is solved numerically, and all results are compared. The
main objective of the present contribution is to evaluate
which of the different numerical approaches is more
suited for determining the ray path through the crystalline
given an index distribution function. The selected method
will be applied in solving two important problems: the
determination of the index distribution in a crystalline
from experimental data, and its use in a computational ray
tracing model of human eye to be applied in ophthalmologic
practice.

II. THEORY

II.1. GRIN MODELS

Crystalline is a GRIN lens that varies its refraction index
both in axial and transversal directions. Most authors agree
in considering a monotonic increment of refraction index
from the surface to the nucleus [13]. This increment has been
modeled in different ways, among which the more used are:

A bi parabolic model [10], It considers the dependence
of the refraction index with position as:

n(z,w) = n00 + n01z + n02z2
+ n12w (1)

where z is the coordinate along the symmetry axis of
the lens and w2 = x2 + y2 is perpendicular to it. ni j are
parameters of the model, adjusted from experimental
data. Due to the fact that crystalline refraction index has
a maximum at its nucleus, and a minimum at the outer
surface, the model can be implemented in the following
way:

n(z,w) =

{

nn + na1(z − d)2 + n0w2

nn + np1(z − d)2 + n0w2 (1.1)

Here d is the z coordinate of the nucleus, which is
contained in plane (5), fig. 1. The model depends on
5 parameters.

The 3-parameter model:

n(ρ, θ) = nn + (nn − ns)

[

ρ

ρs(θ)

]p

(2)

where (ρ, θ) are the polar coordinates of a point inside
crystalline, the sub index n refers to the nucleus and s to
the surface of the crystalline, ρs(θ) is the distance from the
nucleus to the surface in θ direction. p is the GRIN coefficient
that has been reported to vary with age and is around 3 [12].

For computational easiness we will use here the first one. We
plan to use the other one in a future work.

II.2. SOLVING THE GRIN LENS

To calculate the ray paths through crystalline (independently
of the GRIN model used) we apply two strategies: in the first
one we use the vector differential equation of the ray paths,
derived from the eikonal equation [14]:

d

ds

[

n(s)
d~r

ds

]

= ∇n(s) (3)

In eq. 3 is the position vector of a point in the ray path,
s is the length of the ray from an appropriate origin,
and n(s) gives the variation of refraction index along the
trajectory. Expanding the square brackets and introducing
the tangent vector eq. 3 transforms into the following system
of differential equations:

d~r

ds
= ~t(s) (4a)

d~t

ds
=

1

n(s)

[

∇n(s) −
dn

ds
~t

]

(4b)

Introducing the dependences with (z,w) and a new variable
τ, defined as dτ = ds/n(s), we finally find:

dz

dτ
= tz(τ) (5a)

dw

dτ
= tw(τ) (5b)

dtz

dτ
= n(z,w)

∂n

∂z
(5c)

dtw

dτ
= n(z,w)

∂n

∂w
(5d)

Equations 5a-5d can be solved with an appropriate numerical
method if the functional dependence of the GRIN model is
known. For this, proper initial condition has to be imposed.

The second method is based on Fermat’s principle, which
states (in its strongest formulation [15]) that the optical length
of a real ray between any two points is shorter than the optical
length by any other curve which joins the two points and lies
in a certain regular neighborhood of it. The optical path is
defined as:

∆l =

b
∫

a

n(s)ds (6)

It is easy to verify that the principle also states that the time
the light travels by the actual trajectory is smaller than the
time by any other possible trajectory. Writing n(s) and the
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differential path ds in a reference frame, for instance (z,w),
we obtain:

∆l =

b
∫

a

n(z,w)

√

1 + [w′(z)]2dz =

b
∫

a

L(z,w)dz (7)

This variational principle takes us to the Lagrange–Euler
differential equation:

∂L

∂w
−

d

dz

∂L

∂w′
= 0 (8)

Operating eq. 8 it yields [11]:

w′′(z) = f1
{

1 + [w′(z)]2
}

− f2
{

w′(z) + [w′(z)]3
}

(9)

where,

f1 =
1

n(z,w)

∂n(z,w)

∂w
; f2 =

1

n(z,w)

∂n(z,w)

∂z
(10)

For the particular case of eq. 1 we obtain:

f1 =
2n12w

n(z,w)
; f2 =

n01 + 2n02z

n(z,w)
(11)

Equation (9) can be reduced to a first order differential
equation defining m(z) = w′(z), to obtain:

dw

dz
= m(z) (12a)

dm

dz
=

1

n(z,w)

[

1 +m2(z)
]

[

∂n

∂w
−
∂n

∂z
m(z)

]

(12b)

Equations 12a-12b can be solved numerically.

III. NUMERICAL PROCEDURES

Numerical integration of the equations 5a-5d and 12a-12b
was performed using a fifth-order embedded Runge–Kutta
(RK45), found in reference [16] which is based on a paper
by Dormand and Prince [17]. Dormand–Prince method is
an adaptive step size control method to solve the general
problem of the form:

dy

dx
= f (x, y) (13a)

y(x0) = y0 (13b)

in the discrete set of points (xi, yi).

The adaptive step size control means that to approximate
the solution x f , y f the equation 13a is integrated advancing
from x0 to x f with a variable step size hi = xi − x(i − 1) and
hi are selected maintaining a prescribed error tolerance for
the numerical solution y f with the minimum computational
effort. This feature is strongly desired when evaluating the
function f (xi, yi) (in our case depends on n(z,w) model) is
computational expensive.

The equations where also solved using classical Runge-Kutta
4 (RK4) method (Sharma formula for equations 5a-5d).

Equations 5a-5d and 12a-12b need to be completed with the
initial conditions in order to write them in the form of 13a-13b
and solve numerically.

For 5a-5d the initial conditions can be written as:

z(0) = z0 (14a)

w(0) = w0 (14b)

tz(0) = n(z0,w0)tz0 (14c)

tw(0) = n(z0,w0)tz0 (14d)

where [tz0, tw0] is a unitary vector related to m0 (the direction
of the ray on the initial point (z0,w0) by the equations:

tz0 =
1

√

1 +m2
0

(15a)

tw0 =
m0

√

1 +m2
0

(15a)

For 12a-12b we have:

w(z0) = w0 (16a)

w′(z0) = m0 (16b)

The outgoing point at the posterior crystalline surface was
calculated using Hermit interpolation between last point
inside the crystalline and first point outside, so it was needed
to test if the ray path was inside the crystalline in each
iteration step.

Due to the fact that the GRIN model does not have analytical
solutions, we established a numerical standard to compare
with. This was calculated using a computationally expensive
Runge Kutta 8, with adaptive step (RK853) [18] with high
precision arithmetic (float128 type as defined in the Boost
library of C++, which guaranties 34 exact decimal digits).
This method is too slow for being used in real applications,
but is exact enough for using it as comparison standard. The
combination RK853 – float128 allows to obtain more than 16
exact significant digits, which can be considered exact if you
compare with a type double data in C++. All programs were
implemented in this language.

IV. RESULTS AND DISCUSSION

In what follows, we will solve the equations derived from the
eikonal equation and from Fermat’s principle with the two
numerical methods explained above. Their results will be
labeled as E-RK4, E-RK45 and F-RK4, F-RK45 respectively.
The comparison parameter, the absolute error (ǫ), is the
modulus of the difference between the value obtained with a
given method and the one obtained with RK853.

As comparison parameters were selected:

the number of evaluations necessary to get a given
absolute error in the position of the exit ray.
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the number of evaluations necessary to get a given
absolute error in the slope of the exit ray.

the processing time necessary to get a given absolute
error in the position and slope of the exit ray for a given
computer configuration.

Table 1. Parameters of the GRIN model

d [mm] nN na1 np1 n0

1.59 1.407 -0.015427 -0.006605 -0. 001978

Table 1 shows the parameters of the model, used in eq. (1’).

We describe the crystalline as the locus between two aspheric
surfaces (anterior and posterior) with equations:

w2
+ (Q + 1)z2

− 2zR = 0 (17)

In eq. 17 Q is the asfericity parameter, and R is the surface
radius at the center of symmetry. The geometrical data
describing crystalline surfaces were taken from ref. [11] and
are shown in Table 2.

Table 2. Geometric parameters of the crystalline.

Surf Asf (Q) Radius R [mm] Pos z [mm]

Ant -0.94 12.4 0.00
Post 0.96 -8.1 4.02

Figure 2 displays the number of evaluations needed in each
method in order to achieve a given absolute error in the
position of the exit ray. As position we mean the w coordinate,
because once we know this value, z coordinate is univocally
determined from the equation of the posterior crystalline
surface.

Figure 2. Number of evaluations needed in order to achieve a given error for
each method: Position of the exit ray.

From fig. 2 it is easy to see that RK adaptive performs better
if a high accuracy in the position is needed. This is true both
for the eikonal and Fermat´s equations.

Regarding the precision in calculating the exit slope, fig. 3
shows results that are consistent with those of fig.2.

Summarizing, when using the numeric schema RK4 the
number of evaluations increases very fast when a high
precision is needed, though for errors above 10−7 the number
of evaluations is smaller than the required for RK45. This is
easy to understand: when the allowed tolerance is big, the
six evaluations per step needed in RK45 surpass the four
needed in RK4. But when the tolerance is small, the adaptive
step compensates this difference, diminishing the number of
iterations needed for RK45.

From figs. 2 and 3 it is evident that numeric procedure
RK45 is more convenient for calculating the trajectories
when high precision is needed. Regarding the selection
of the most appropriate differential equation, though the
number of evaluations for solving the equation derived from
Fermat´s principle is always smaller than in the case of
using the eikonal equation, the difference is not remarkable.
So, for having a better selection criterion, we use another
comparison quantity: execution time.

For this, we worked in a computer with the following
architecture, which can be easily present in an average
ophthalmological service in Cuba: Intel(R) Celeron(R) CPU
E3400 at 2.60 GHz and 2 GB of RAM.

Figure 3. Number of evaluations needed in order to achieve a given error for
each method: Slope of the exit ray.

Figure 4 shows the execution time, calculated as the average
of 50 different tracks through crystalline for a given error: fig.
4a shows the execution time to achieve a given accuracy in
the position of the exit ray and fig. 4b in the slope of the exit
ray.

It is important to understand that these are the most
important parameters, because together they determine the
position at which the light ray intercepts the retina, and so
the visual sensation.

Figure 4 gives answer to the raised question: the execution
time is smaller in the Fermat formulation. Though the
difference seems to be too small to matters, if the model were
used to reconstruct the image of an object, thousands of rays
should be traced, and the difference becomes appreciable.
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Figure 4. Execution time for achieving a given accuracy in the determination
of the exit point (a) and the slope of the exit ray (b).

V. CONCLUSIONS

We have performed a group of numerical experiments
in order to choose the best computer model for the
determination of ray paths through a human crystalline. The
main result is that a Runge Kuta integration algorithm with
adaptive step applied to the differential equation derived
from the application of Fermat’s principle to the GRIN model
of the human lens is the most efficient, and will be applied in
the model eye under development by our research group.
This will also be a part of an optimization algorithm for

determining the GRIN parameters of the crystalline based
on in vitro experiments.

This model will also help in the understanding of the
influence of the lens in the aberrations of human eyes. In
a future work we will apply this study to different models of
GRIN, with polynomial higher order.
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