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HILBERT CURVES IN TWO DIMENSIONS
CURVAS DE HILBERT EN DOS DIMENSIONES

E. Estevez-Ramsa†, D. Estevez-Moyab, Y. Martı́nez-Camejoc, D. Gómez-Gómezb and Beatriz Aragón-Fernándezd

a) Facultad de Fı́sica-IMRE, Universidad de La Habana, Cuba; estevez@imre.uh.cu†
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The complete set of Hilbert curves in two dimensions is
presented, comprising up to forty curves: 12 homogeneous
and 28 inhomogeneous. The analytical expressions for all the
homogeneous curves are derived, which are easily extendable to
all forty curves. A tag system, that allows the construction of all
curves, is also described.

El conjunto completo de curvas de Hilbert en dos dimensiones es
presentado, comprendiendo cuarenta curvas: 12 homogéneas y 28
inhomogéneas. Las expresiones analı́ticas para todas las curvas
inhomogéneas son deducidas, lo cual es fácilmente extensible
a todas las curvas. Un sistema de tortuga, que permite la
construcción de todas las curvas también es descrito.

PACS: Other topics in mathematical methods in physics, 02.90.+p; Computational techniques, simulations, 02.70.-c; Linear algebra,
02.10.Ud

I. INTRODUCTION

There is an important number of applications that involves or
benefits from mapping points from a multidimensional space
into a single dimension and viceversa. Locality preservation
measures how points close together in the multidimensional
space remain close when mapped to the one dimensional
space. In data base applications, for example, it is often
needed to map elements from a multidimensional attribute
space onto a linear range of block addresses on the storage
media. In such case, access speed could improve if points
close together in the multi-dimensional attribute space are
also close together in the one-dimensional space [1, 2], a
property often related to clustering [3]. A similar need arises
in image representation and storage, when a single numeric
index is used to address each point in a multidimensional
image space. Here, close regions in the multidimensional
image space should correspond to consecutive values in
the numerical index in such a way, that partial storage and
retrieval could be optimized, as well as compression over
the one dimensional sequence [4–6]. Another application is
the visualization of massive one dimensional data as a two
dimensional image that allows a global view of the data
while the local features are not lost [7–9]. Other applications
include bandwidth reduction [10], sub-optimal solution of
the traveling salesman problem [11, 12].

Space filling curves allow a surjective mapping between
the one dimensional space and the d-dimensional one:
R −→ Rd. In the two-dimensional case, the most studied
space filling curve has been the Hilbert curve [13]. Iterative
curve-generating algorithms are already well established,
and allow to construct an onto, but not one-to-one, mapping
between the unit segment I = {t|0 6 t 6 1} and the unit
square Q = {(x, y)|0 6 x 6 1, 0 6 y 6 1} [14]. This mapping, as
any other space filling curve mapping, is not a bijective one.

Nevertheless, its nth-order iteration, or approximation, may
indeed be seen as a bijective mapping between subsegments
of I and subsquares of Q to a 4n-resolution [15]. This, together
with the good locality preservation through all the iterations,
is what has opened a wealth of applications of the Hilbert
curve in computer sciences [1, 2]; image processing [5, 16];
data visualization [8, 9]; antenna design [17, 18]; computer
aided design [19]; pattern recognition [20]; passive radio
frequency tag [21]; among others. Effective algorithms for
the generation of Hilbert curves have been reported [22, 23].

Hilbert curves are based on the iterative application of affine
transformations to a starting mapping [14]. In the starting
mapping the unit interval is partitioned into four disjoint,
equal length, subintervals, and put into correspondence with
a four disjoint, equal area, subsquares partition of the unit
square. At each step, each subinterval and corresponding
subsquare, are considered as an original interval and
square, respectively, and the affine transformation is then
applied over them. The affine transformation must be so,
that continuity is preserved, and also that two adjacent
subintervals are mapped into two adjacent subsquares. The
curve is uniquely defined (up to a rotation or reflection) by
fixing the mapping of the initial and final subintervals.

After Hilbert original curve Moore [24] introduced a new
curve that now bears his name. Liu [25] described four
new curves, introducing a new approach for constructing
other mappings. The affine transformations involved to
obtain a n-order curve, involves only one iteration over the
(n − 1)-order Hilbert curve.

Pérez-Davidenko et al. [26] have further developed the
idea by introducing the concept of homogeneous Hilbert
curves (HHC) in two dimensions. HHC can be proper
or improper. Homogeneity implies that only one set of
rules is applied to the nth-order Hilbert curve in order to
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generate the (n + 1)-order curve. The development is based
on the idea that n-order space filling curves can be also
built from (n − 1)-order Liu curves, if the latter shows the
correct quadrant connectivity. It was found that only the
fourth Liu curve can be used for such purposes, and six
additional curves can be added to complete twelve HHC
in two dimensions [26].

If the homogeneity condition is dropped and it is allowed
to build n + 1-order curves by mixing Hilbert curves of
different type at different quadrants, the set of Hilbert type
curves can be further extended. Such curves will be named
inhomogeneous and they expand the number of Hilbert
curves in two dimensions up to forty.

The importance of finding new space filling curves is due to
the fact that some of the above cited applications can improve
their performance if a broader set, from where candidate
solutions can be drawn, is available.

Analytical expressions for space filling curves was pioneered
by Sagan [14]. The availability of closed expressions has
several advantages, both practical and theoretical. It can be
used as a starting point for generating algorithms, and it can
be used to prove theorems involving the curves itself.

Séebold has showed that the original Hilbert curve could be
seen as the realization of certain tag system, consisting in
the application of a morphism to an infinite word [27]. The
tag-system offers a simple and intuitive procedure to build
the space filling curve of any order.

The aim of this contribution is to present, in a single paper,
several results involving two dimensional Hilbert curves.
The analytical expressions for all homogeneous curves are
deduced and reported, this includes the proper and improper
curves. We report how to extend the number of curves to
include the inhomogeneous ones. A construction algorithm
for all reported curves based on a tag system is also reported.

II. HILBERT CURVES CONSTRUCTION ALGORITHM

For the purpose of this paper, a 2D space filling curve is a
surjective mapping of the unit interval I onto the unit square
Q, I −→ Q.

Remark II.1 An ordered tern (x,y) of rationals is called a point.
A one-to-one mapping, whose domain is a finite ordered set {I} of
R rationals (r ∈ {I}, 0 ≤ r < 1) and whose image is a set {Q} of
R points (ζ = (x, y) ∈ {Q}, 0 ≤ x < 1, 0 ≤ y < 1), is called a
curve mapping. If a point ζ ∈ {Q} is the image of a rational r ∈ {I}

under the mapping f (k) (r
f (k)

→ ζ), then ζ is denoted by f (k)(r). In
particular, if r0 is the minimum (first) value in the ordered set {I}
(r0 < r ∀r ∈ {I}; r , r0) then f (k)(r0) is called the entry point,
and if rR−1 is the maximum (last) value in the ordered set {I}
(rR−1 > r ∀r ∈ {I}; r , rR−1) then f (k)(rR−1) is called the exit point.
In what follows, the set {I} will consist of R = 4k rational values
n/4k, where 0 ≤ n < 4k

− 1, the entry point and exit points will be
f (k)(0) and f (k)(1 − 1/4k), respectively. Such set will be denoted by
I(k). The corresponding set of 4k points will be denoted by Q(k). The

mapping f (k) is called the k-order curve mapping. When k → ∞
the superscript k will be dropped.

Remark II.2 We will say that a rational number r ∈ [0, 1) has a
quaternary representation (quaternary decomposition) denoted by
r = 0.q1q2q3 . . . qk (0 ≤ qi < 4) if

r =
q1

4
+

q2

42 +
q3

43 + . . . +
qk

4k
(0 ≤ qi < 4). (1)

A rational number has a quaternary decomposition of order k if
qi = 0 ∀i > k.

Remark II.3 For the purpose of this paper it will be called
a R-partition of the unit interval I an ordered sequence of R
non-overlapping segments Ii of equal length (= 1/R) such that⋃R

i=1 Ii = I. A quaternary partition of order k of the unit interval
is a 4k-partition of the unit interval. A recursive partition of an
interval I is a partition of the unit interval such that, in each
recursive step, each subsegment of the previous step is taken as a
new interval to be partitioned. The partition segments are numbered
from left to right. If the set I(k) is built by rational numbers r
with quaternary decomposition of at most order k, then to each
r = 0.q1q2q3 . . . qk ∈ I(k) will correspond the segment

∑k
i=1 qi4k−i

in the recursive quaternary partition of order k of the unit interval
which will be denoted by I0.q1q2q3...qk .

Remark II.4 For the purpose of this paper it will be called a
R-partition of the unit square Q a set of R non-overlapping
subsquares Q j of equal area, such that

⋃R
j=1 Q j = Q. A quaternary

partition of order k of the unit square is a 4k-partition of the unit
square. A recursive partition of the unit square Q is a partition
such that, in each recursive step, each subsquare of the previous
step is taken as a new square to be partitioned. In a quaternary
recursive partition of a square Qi each subsquare will be labeled
in clockwise manner starting from the lower left (Figure 1). If
0.q1q2q3 . . . qk is the quaternary decomposition of some rational
number r, then Q0.q1q2q3...qk is the subsquare determined by the
following recursive procedure: (i) Choose the unit square, make
i = 1 ; (ii) Make a quaternary partition of the chosen square and
choose the qi subsquare, make i = i + 1; (iii) if i < k return to step
(ii), stop otherwise, Q0.q1q2q3...qk is the last chosen subsquare. To each
subsquare in the 4k-partition of the unit square, a representative
point can be assigned belonging to the subsquare, thus effectively
building a Q(k) set of points. In this way, f (k)(r) will also denote a
mapping between the partition of order k of the unit interval and
the partition of the same order of the unit square.

0
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0
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3
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Figure 1. Recursive partition of the unit square.
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The rationale behind Hilbert recursive construction of a space
filling curves can be described by the following algorithm
(Fig. 2):
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Figure 2. Hilbert construction.

1. I0. = {r|0 ≤ r ≤ 1} and Q0. = {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1},
k = 0.

2. Perform a quaternary partition of each interval

I0.q1...qk → I0.q1...qk0
⋃

I0.q1...qk1
⋃⋃

I0.q1...qk2
⋃

I0.q1...qk3.
(2)

3. Perform a quaternary partition of each subsquare

Q0.m1...mk → Q0.m1...mk0
⋃

Q0.m1...mk1
⋃⋃

Q0.m1...mk2
⋃

Q0.m1...mk3.
(3)

4. Make the correspondence I0.q1...qkqk+1 −→ Q0.m1...mkmk+1

such that two consecutive segments in I(k+1)

corresponds to two adjacent subsquares in Q(k+1)

(adjacency condition), while preserving the continuity
between the entry and exit point of each subsquare in
the previous partition (continuity condition).

5. k=k+1

6. go to step 2.

The curve obtained at the k iteration is known as the Hilbert
curve of order k, and will correspond to the partition of
the unit interval and the unit square into 4k subintervals
and subsquares, respectively. The algorithm described above
does not determine uniquely the curve mapping, in order
to do so, boundary condition must be given. That is, for all
k, fix the entry and exit point, i.e. the mapping of the initial
and final segment to the corresponding subsquares in the
quaternary partition of Q. Hilbert curves are usually referred
to the infinite limit k −→ ∞, where the mapping becomes
surjective.

Hilbert original curve results from mapping at any order
k, the entry point as the lower left subsquare (I0.000...0 −→

Q0.000...0); and the exit point to the lower right subsquare
(I0.333...3 −→ Q0.333...3).

III. HOMOGENEOUS HILBERT CURVES

Definition III.1 An homogeneous Hilbert curve (HHC) of order
k is a Hilbert curve of order k built recursively from one and only
one Hilbert curve of order k − 1.

By assigning different initial and final mappings, five
additional curves, besides the original Hilbert curve, can be
constructed. These curves have been called by Davidenko et
al. proper Hilbert curves [26]. The boundary conditions for
the complete set of proper Hilbert curve can be seen in Table
III and Figure 3.

Table 1. The boundary conditions for the set of Hilbert proper curves.

ν Curve Boundary conditions
0 Hilbert I0.000...0 −→ Q0.000...0

I0.333...3 −→ Q0.333...3

1 Moore I0.000...0 −→ Q0.033...3

I0.333...3 −→ Q0.300...0

2 Liu 1 I0.000...0 −→ Q0.022...2

I0.333...3 −→ Q0.311...1

3 Liu 2 I0.000...0 −→ Q0.011...1

I0.333...3 −→ Q0.322...2

4 Liu 3 I0.000...0 −→ Q0.000...0

I0.333...3 −→ Q0.311...1

5 Liu 4 I0.000...0 −→ Q0.011...1

I0.333...3 −→ Q0.300...0

Remark III.2 The proper Hilbert curve of order k is given the
symbol νHk, with ν = 0, 1, 2 . . . 5, where 0Hk and 1Hk are Hilbert’s
original curve and the Moore’s curve [24], respectively. For ν =
2, 3, 4, 5 the symbols correspond to the additional proper curves
introduced by Liu [25].

Figure 3. Boundary vectors (shown in green) of all six proper homogeneous
Hilbert curves. 4H and 5H are not mirror symmetric, which results in two
boundary vectors related by the reversion operation. Boundary vector for
Hilbert curve 2H can not be used for building improper Hilbert curves as it is
the only boundary vector that starts and ends at interior points of the Hilbert
curve.

Consider an additional operation called reversion. Reversion
swaps the entry and exit point of a curve mapping (Figure 4).
If the reversion operation is introduced, six additional curves
called improper in [26] can be constructed. The boundary
conditions for the complete set of improper Hilbert curve of
order k > 2 can be seen in Table III.
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Figure 4. Reversion operation.

Table 2. The boundary conditions for the set of Hilbert improper curves with
order larger than 3.

ν Curve Boundary conditions
6 I1 I0.000...0 −→ Q0.023...3

I0.333...3 −→ Q0.310...0

7 I2 I0.000...0 −→ Q0.023...3

I0.333...3 −→ Q0.332...2

8 I3 I0.000...0 −→ Q0.001...1

I0.333...3 −→ Q0.332...2

9 I4 I0.000...0 −→ Q0.032...2

I0.333...3 −→ Q0.301...1

10 I5 I0.000...0 −→ Q0.010...0

I0.333...3 −→ Q0.323...3

11 I6 I0.000...0 −→ Q0.010...0

I0.333...3 −→ Q0.301...1

Table 3. Geometric properties of HHC.

Curve Symm. Entry-Exit points Closed
0H (Hilbert) m corner-corner
1H (Moore) m edge-edge shared X
2H (Liu1) m interior-interior X
3H (Liu2) m edge-edge opposed
4H (Liu3) 1 corner-interior
5H (Liu4) 1 edge-edge adjacent
6H (I1) m interior-interior X
7H (I2) 1 interior-edge
8H (I3) m edge-edge opposed
9H (I4) m interior-interior X
10H (I5) m edge-edge opposed
11H (I6) 1 edge-interior

Proper curves of order k are constructed from a specific
mapping, different for each curve type, over the 0Hk−1 curve.
Improper curves, on the other hand, are constructed from
a specific mapping, different for each curve type, over the
5Hk−1 (Liu 4) curve.

Figure 5 shows the twelve possible HHC of order 4.

(Hilbert) (Moore) (Liu 1) (Liu 2) (Liu 3) (Liu 4)

Figure 5. The homogeneous Hilbert curves of order 4. The circle signals the
entry point, and the arrow the exit point.

From a geometric point of view HHC can be classified by
their symmetry: some curves posses a vertical symmetry line
at the middle of the unit square (m symmetry); they can also
be classified according to the nature of the entry and exit
points, which can lie at a corner, edge or interior subsquare;
finally HHC can be closed if the entry and exit point lies at
adjacent subsquares (Table III).

IV. ARITHMETIC REPRESENTATION OF HHC

The HHC can also be described as generated iteratively by
the application of certain sets of affine transformations νpi
to points ζ = (x, y) belonging to the unit square. The affine
transformation operator has the general form

p
(

x
y

)
=

1
2

U ·
(

x
y

)
+

1
2

t = [U, t] 1
2

(
x
y

)
, (4)

where U is a rotation, given by a 2 × 2 orthogonal matrix,
and t is a two dimensional translation vector. Each νHk is
constructed by using a set of four νP = {νpi} (i = 0, 1, 2, 3)
transformations, one for each quadrant, that act (⊗) over the
coordinates of the k − 1-order curve. For the proper curves,
the operation can be formally represented as

νHn =ν P ⊗ 0Hn−1, (5)

while for the improper curves

νHn =ν P ⊗ 5Hn−1. (6)

Table 4 gives the sets of affine transformations.

Table 4. Affine transformations p = [U, t] 1
2

for the HHC. (The 1
2 subscript is

dropped for succinctness. The over-bar means reversion operation, see [26]
for details).

Curve q0 q1 q2 q3

0H (Hilbert) [UR, t0] [UI, t1] [UI, t3] [−UR, t4]
1H (Moore) [UV , t2] [UV , t3] [−UV , t5] [−UV , t3]
2H (Liu 1) [−UI, t3] [UI, t1] [UI, t3] [−UI, t4]
3H (Liu 2) [UH, t1] [UV , t3] [−UV , t5] [UH, t3]
4H (Liu 3) [UR, t0] [UI, t1] [UI, t3] [−UI, t4]
5H (Liu 4) [UH, t1] [UV , t3] [−UV , t5] [−UV , t3]

6H (I1) [−UI, t3] [−UH, t3] [UI, t3] [UH, t3]

7H (I2) [−UI, t3] [−UH, t3] [UI, t3] [−UR, t4]

8H (I3) [−UV , t1] [−UH, t3] [UI, t3] [−UR, t4]

9H (I4) [−UR, t3] [UV , t3] [UR, t3] [−UV , t3]

10H (I5) [UH, t1] [UV , t3] [UR, t3] [−UI, t4]

11H (I6) [UH, t1] [UV , t3] [UR, t3] [−UV , t3]

UI =

(
1 0
0 1

)
UR =

(
0 1
1 0

)
UV =

(
0 −1
1 0

)
UH =

(
1 0
0 −1

)
t0 =

(
0
0

)
t1 =

(
0
1

)
t2 =

(
1
0

)
t3 =

(
1
1

)
t4 =

(
2
1

)
t5 =

(
1
2

)
The rotation matrices of the affine transformations form
a group. The multiplication table is shown in Table 5.
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The group is isomorphic with the planar point group
4mm [28] with generators {UR,UH}. The group structure
exhibits three subgroups of order 4: {UI,−UI,UR,−UR} and
{UI,−UI,UH,−UH} isomorphic to 2mm, {UI,−UI,UV,−UV}

isomorphic to the planar point group 4; five cyclic
subgroups of order two: {UI,UR}, {UI,−UR}, {UI,−UI},
{UI,UH}, {UI,−UH}.

Table 5. The multiplication table for the rotation parts of the affine
transformations. The rotation operations are defined in Table 4.

UI UR −UI −UR UV UH −UV −UH

UI UI UR −UI −UR UV UH −UV −UH

UR UR UI −UR −UI UH UV −UH −UV

−UI −UI −UR UI UR −UV −UH UV UH

−UR −UR −UI UR UI −UH −UV UH UV

UV UV −UH −UV UH −UI UR UI −UR

UH UH −UV −UH UV −UR UI UR −UI

−UV −UV UH UV −UH UI −UR −UI UR

−UH −UH UV UH −UV UR −UI −UR UI

We now generalize the procedure for an analytic
representation of the original Hilbert curve 0H given by
Sagan [14] to include all HHC.

Theorem IV.1 Consider a rational number r ∈ I(k) with
quaternary representation of order k given by equation (1). The
curve mapping f (k)

ν of the proper νHk Hilbert curve (ν ≤ 5) will be
given by

f (k)
ν (r) =

( 1
2k

)
νUq1 0Uq2 . . . 0UqkΩ+

∑k
j=2

(
1
2 j

)
νUq1 0Uq2 . . .0 Uqk−1 0tq j + 1

2 νtq1 ,

(7)

where Ω is the set Q(0) with a representative point for the unit
square.

Proof. According to equation (5),

νHn =ν P ⊗ 0Hn−1 =ν P ⊗ 0P ⊗ 0Hn−2 =

= νP ⊗ 0P ⊗ 0P ⊗ 0Hn−3 =

. . .

= νP ⊗

k︷              ︸︸              ︷
0P ⊗ 0P ⊗ . . . 0P ⊗ 0H0

(8)

each νP in the above expression is a set of four affine
transformations that defines the curve mapping. If we
consider Ir with r = 0.q1q2 . . . qk then expression (8)
determines by construction the curve mapping:

f (k)
ν (r) = νpq1 0pq2 0pq3 . . . 0pqkΩ (9)

where Ω, without loss of generality, will be taken as Ω =

{(1/2, 1/2)}. From equation (4)

f (k)
ν (r) =

νpq1 0pq2 0pq3 . . . 0pqk−1 [ 1
2 0UqkΩ + 1

2 0tqk ] =

= νpq1 0pq2 0pq3 . . . 0pqk−2[
1
2 0Uqk−1 [ 1

2 0UqkΩ + 1
2 0tqk ] + 1

2 0tqk−1

]
=

= νpq1 0pq2 0pq3 . . . 0pqk−2[
1
22 0Uqk−1 0UqkΩ + 1

22 0Uqk−1 0tqk + 1
2 0tqk−1

]
=

= . . .

,

and expanding for all operators we arrive at equation (7). �

Equation (7) gives the arithmetic representation of a Hilbert
curve of order k: νHk.

Corollary IV.2 In the limit k −→ ∞,

fν(r) =

∞∑
j=2

( 1
2 j

)
νUq1 0Uq2 . . .0 Uqk−1 0tq j +

1
2 νtq1 . (10)

Proof. It follows directly from equation (7), taking k −→ ∞
makes the first term tend to zero. �

From the multiplication table (Table 5),−UI = −UR·UR, where
UI is the identity matrix, which simplifies equation (7) to

f (k)
ν (r) =

( 1
2k

)
(−1)#3(2,k)

νUq1 ×Ω +

k∑
j=2

( 1
2 j

)
(−1)#3(2, j−1)

νUq1×

×U#03(2, j−1)
R 0tq j + 1

2 νtq1 ,

use have been made of the fact that URΩ = Ω. #3(s, p) is the
number of 3s, from qs to qp, in the quaternary expansion of r ;
correspondingly, #03(s, p) is the number of 0s and 3s, from qs
to qp, in the quaternary expansion of r:

#3(s, p) =
1
6

p∑
m=s

qm(qm − 2)(qm − 1)

#03(s, p) = p +
1
2

p∑
m=s

qm(qm − 3)

If #03(s, p) is even, then U#03(s,p)
R = UI the identity operator,

otherwise, U#03(s,p)
R = UR.

Theorem IV.3 Consider a rational number r ∈ I(k) with
quaternary representation of order k given by equation (1). If f (k)

ν (r)
is the image point of r for the νHk proper curve, and f (k)

ν′ (r) is the
image point of r for the ν′Hk proper curve, then

f (k)
ν (r) = νpq1 ν′p

−1
q1

f (k)
ν′ (r) (11)

Proof. According to equation (9),

f (k)
0 (r) = 0pq1 0pq2 0pq3 . . . 0pqkΩ

from where

0p−1
q1

f (k)
0 (r) = 0pq2 0pq3 . . . 0pqkΩ, (12)

comparing equation (12) with equation (9), results in

f (k)
ν (r) = νpq1 0p−1

q1
f (k)
0 (r).
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From this last equation, for two Hilbert curves νHk and ν′Hk

f (k)
0 (r) = 0pq1 νp−1

q1
f (k)
ν (r)

f (k)
0 (r) = 0pq1 ν′p−1

q1
f (k)
ν′ (r),

equation (11) follows immediately. �

Expression (11) maps one-to-one a point in the proper Hilbert
curve νHk with its corresponding (in the sense of belonging
to the same value r ∈ I(k)) point in another proper Hilbert
curve ν′Hk.

From equation (11), two points lying in the same quadrant
preserve their distance when changing from one Hilbert
curve to another. Indeed, if two points r and r1 are mapped to
the same quadrant, then in their quaternary decomposition,
the share the same q1 value, and∣∣∣ f (k)

ν (r) − f (k)
ν (r1)

∣∣∣ =∣∣∣ νpq1 ν′p−1
q1

f (k)
ν′ (r) − νpq1 ν′p−1

q1
f (k)
ν′ (r1)

∣∣∣
=

∣∣∣∣ νUq1 ν′U−1
q1

[
f (k)
ν′ (r) − f (k)

ν′ (r1)
]∣∣∣∣

=
∣∣∣ νUq1

∣∣∣ ∣∣∣ ν′U−1
q1

∣∣∣ ∣∣∣ f (k)
ν′ (r) − f (k)

ν′ (r1)
∣∣∣

=
∣∣∣ f (k)
ν′ (r) − f (k)

ν′ (r1)
∣∣∣

where in the last step, use have been of the orthogonality of
the νU in the affine transformations.

IV.1. Improper HHC

Theorem IV.4 Consider r ∈ [0, 1] with k order quaternary
decomposition, then given the one-to-one mapping r → r′ given
by Table 6, let the quaternary expansion of r′ be given by equation
(1). The curve mapping f (k)

ν (r) of the improper νHk Hilbert curve
(ν ≥ 6) will be given by

f (k)
ν (r) =

( 1
2k

)
νUq1 5Uq2 0Uq3 . . . 0UqkΩ+

+
∑k

j=3

(
1
2 j

)
νUq1 5Uq2 0Uq3 . . .0 Uqk−1 0tq j+

+ 1
4 νUq1 5tq2 + 1

2 νtq1 .

(13)

Table 6. Transformation of value r ( r −→ r′) for the improper νHk, before
using equation (13).

b4rc 0 1 2 3
6H (I1) r 3/4 − 1/4k

− r r 7/4 − 1/4k
− r

7H (I2) r 3/4 − 1/4k
− r r r

8H (I3) 1/4 − 1/4k
− r 3/4 − 1/4k

− r r r
9H (I4) 1/4 − 1/4k

− r r 5/4 − 1/4k
− r r

10H (I5) r r 5/4 − 1/4k
− r 7/4 − 1/4k

− r
11H (I6) r r 5/4 − 1/4k

− r r

Proof. For the improper curve mapping, following expression
(6),

f (k)
ν (r) = νpq1 5pq2 0pq3 . . . opqkΩ

= νpq1 f (k−1)
5 (0.q2q3 . . . qk)

(14)

expression (13) follows from (14) by the same reasoning
used for the proper Hilbert curve mapping. In the case of
improper curves, reversion operation must be taken care of.
The integer part of 4r ( b4rc)) determines to which quadrant in
the quaternary partition of the unit square r will be mapped
to. Table 4 shows which quadrant implies reversion and Table
6 follows directly. �

Note that the quaternary expansion used in (13) is that of r′.

Corollary IV.5 In the limit k→∞ equation (13) reduces to

fν(r) =∑
∞

j=3

(
1
2 j

)
νUq1 5Uq2 0Uq3 . . .0 Uqk−1 0tq j+

1
4 νUq1 5tq2 + 1

2 νtq1 .

(15)

Theorem IV.6 If f (k)
ν (r) is the image point of r for the νHk improper

curve and, f (k)
ν′ (r) is the image point of r for the ν′Hk improper curve,

then

f (k)
ν (r) = νpq1 ν′p

−1
q1

f (k)
ν′ (r) (16)

Proof. Similar to the demonstration of corollary IV.3 �

V. BUILDING HHC BASED ON A TAG SYSTEM

Consider the finite alphabet Σ, whose elements are called
letters, and let Σ∗ be the free monoid generated by Σ whose
elements are called words (Σ∗ is the set of all finite length
words formed by the concatenation of letters drawn from
Σ). The empty word ε is considered to be a member of Σ∗.
The concatenation of two words p and s is written as ps. The
length of a word p is denoted by |p|

Remark V.1 For the purposes of this article, a morphisms on Σ,
is a map ϕ : Σ∗ → Σ∗, such that ϕ(ps) = ϕ(p)ϕ(s) for all p, s ∈ Σ∗

. A literal morphism is a morphism that preserves length, that is
|ϕ(p)| = |p|. A non-erasing morphism is a morphism φ such that
φ(a) , ε for all a ∈ Σ.

Remark V.2 In what follows, a tag system will be understood as
a quintuple T = (Σ, p, φ, ϕ,Σ), where Σ is an alphabet; p ∈ Σ∗,
|p| > 0; φ is a non-erasing morphism and ϕ a literal morphisms,
both from Σ∗ to Σ∗. If φn(p) (n ∈ N) denotes the n-th application
of the non-erasing morphism φ over the word p, then ϕ(φn(p))
generates a word h of length |h| ≥ |p|.

Let us consider the alphabet Σ = {u, d, l, r}, where u (d)
stands for up (down), and l (r) stands for left (right). From a
geometrical point of view, each letter from left to right in a
word p ∈ Σ can be seen as a pencil stroke of a unit length in the
direction given by the letter. Then every Hilbert curve of any
order can be described by a corresponding word in Σ∗ (e.g.
0H2 in figure 3 will be described by the word ruluurdrurddldr).
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Define the morphism:

δo(u) = r δo(r) = u δo(d) = l δo(l) = d
δa(u) = l δa(r) = d δa(d) = r δa(l) = u,

then the 0Hn+1 Hilbert curve can be constructed from
the 0Hn curve by the tag system given by 0hn+1 =
δo(0hn) u 0hn r 0hn d δa(0hn).

In a similar fashion the tag system for the remaining
homogeneous Hilbert curves was given in [26] and repeated
here for completeness. For the proper curves:

1hn+1 = δg(0hn) u δg(0hn) r δx(0hn) d δx(0hn)
2hn+1 = δ f (0hn) u 0hn r 0hn d δ f (0hn)
3hn+1 = δm(0hn) u δg(0hn) r δx(0hn) d δm(0hn)
4hn+1 = δo(0hn) u 0hn r 0hn d δ f (0hn)
5hn+1 = δm(0hn) u δg(0hn) r δx(0hn) d δx(0hn).

Considering p as the reversion operation over the word p,
given by reversing the order of the word and swapping
left and right(l � r), as well as up and down (u � d)(e.g.
ruluurdrurddldr = luruuldlulddrdl), the tag system for the
improper curves will be:

6hn+1 = δ f (5hn) u δy(5hn) r 5hn d δa(5hn)

7hn+1 = δ f (5hn) u δy(5hn) r 5hn d δa(5hn)

8hn+1 = δx(5hn) u δy(5hn) r 5hn d δa(5hn)

9hn+1 = δa(5hn) u δg(5hn) r δo(5hn) d δx(5hn)

10hn+1 = δm(5hn) u δg(5hn) r δo(5hn) d δ f (5hn)

11hn+1 = δa(5hn) u δg(5hn) r δo(5hn) d δx(5hn).

The morphism used above are defined as:

δg(u) = l δg(r) = u δg(d) = r δg(l) = d
δx(u) = r δx(r) = d δx(d) = l δx(l) = u
δ f (u) = d δ f (r) = l δ f (d) = u δ f (l) = r
δm(u) = d δm(r) = r δm(d) = u δm(l) = l
δy(u) = u δy(r) = l δy(d) = d δy(l) = r

.

VI. INHOMOGENEOUS HILBERT CURVES

If the homogeneity condition is dropped and it is allowed to
build k + 1-order curves by mixing Hilbert curves of different
type at different quadrants, the set of Hilbert type curves can
be further extended. The following then takes relevance:

Definition VI.1 An inhomogeneous Hilbert curve (IHHC) of
order k, is a Hilbert curve of order k built recursively from at
least two different type Hilbert curve of order k − 1.

The following theorem will be proved:

Theorem VI.2 There are forty different (up to a rotation,
reflection or reversion) Hilbert curves in two dimensions: twelve
homogeneous and twenty eight inhomogeneous.

Proof. A constructive geometric proof will be made based on
boundary vectors similar to the one given in [26]. We already
showed the twelve homogeneous Hilbert curve. These curves
have exhausted all homogeneous possibilities as proved in
[26]

Hilbert curves are uniquely determined by their boundary
vectors which are preserved for any order [14,24]. All Hilbert
curves can be explored by considering at each quadrant, the
boundary vector. The set of all possible Hilbert curves in two
dimensions can be exhausted, regardless of the curve order,
by combining all possible boundary vectors at each quadrant
in such a way that connected quadrants must have connected
boundary vectors.

Except for Hilbert curve 2H (both entry and exit point are
interior, excluding the possibility of quadrant connectivity),
all the other curves can serve as building blocks.

Figure 6. Inhomogeneous Hilbert curve built from the combination of 3H and
5H curves. Boundary vector diagrams and order 3 approximations.

For building the inhomogeneous Hilbert curve it must be first
observed that, as already known, the boundary vector for 0Hn
and 5Hn can be used at any quadrant. The boundary vector
for the 3Hn curve connects opposite edges (Figure 3) and,
according to the connectivity diagram between quadrants
shown in Figure 1a, it can only appear in the first and last
quadrant. For the boundary vector of the 4Hn curve, one
end is an interior point and therefore, useless for quadrant
connectivity. This constrains the use of such curve also to the
first and last quadrants where connectivity are not required
at one end. Finally, the boundary vector for the 1Hn curve
starts and ends at the same edge making it only useful at the
first and last quadrants.

All possible combinations are then:

1. 3H+0H: The boundary vectors of the 3H and 0H can only
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connect quadrants: 0 → 1 or 2 → 3, as the boundary
vector for the 0H starts and ends at corners, while that
of 3H start and ends at the middle of edges.

2. 3H +5 H: The possible quadrants combinations of the
boundary vectors will be: (a) 3H →5 H →5 H →3 H.
Another possibility is an 3H in the first quadrant and
three 5H in the remaining quadrants: (b) 3H →5 H →
5H → 5H. Taking into account rotation at quadrants 1
and 2, (a) and (b) results in a total of six new curves
shown in Figure 6.

Figure 7. Inhomogeneous Hilbert curve made of a combination
of 0H and 4H curves. Boundary vector diagrams and order 3
approximations.

3. 4H +0 H: The possible combinations of two boundary
vectors of each type in this case will be: (a) 4H →0
H →0 H →4 H. Another possibility is a 0H in the
first three quadrants and 4H in the last quadrant: (b)
0H →0 H →0 H →4 H. For (a) rotations in the 0 and
3 quadrants or in the 1 and 2 quadrants results in six
new curves; while for (b) all possible rotations in each
quadrant while preserving connectivity results in 8 new

curves, making a total of 14 inhomogeneous curves
shown in Figure 7.

4. 4H+5 H: The boundary vectors of the 4H and 5H can not
connect between any quadrant (possibilities are 0 → 1
or 2 → 3) as the connecting extreme of the boundary
vector for the 4H starts or ends at a corner, while that of
5H start and ends at the middle of edges. Consequently
this two curves can not combine at any quadrant.

5. 1H+0 H: The boundary vectors of the 1H and 0H can not
connect between any quadrant (possibilities are 0 → 1
or 2 → 3) as the connecting extreme of the boundary
vector for the 0H starts or ends at a corner, while that
of 1H start and ends at the middle of the same edge.
Consequently this two curves can not combine at any
quadrant.

6. 1H +5 H: The possible combinations of two boundary
vectors of each type in this case will be: (a) 1H →5
H →5 H →1 H. Another possibility is a 5H in the
first three quadrants and 1H in the last quadrant: (b)
5H →5 H → 5H →4 H. Taking into account rotation at
quadrant 1 and 2, (a) and (b) result in a total of six new
curves shown in Figure 8.

Figure 8. Inhomogeneous Hilbert curve made of a combination
of 5H and 1H curves. Boundary vector diagrams and order 3
approximations.

7. triplets containing 0H: Combinations of three different
curves with 0H at quadrants 1 and 2 are not compatible
with the boundary vectors, as 0H only connects to 0H.

8. 1H +5 H +3 H: The possibility will be 5H at quadrants 1
and 2 with 1H and 3H, one at each remaining quadrants:
(a) 3H →5 H →5 H →1 H. Taking into account rotation
at quadrants 1 and 2 results in two curves shown in
Figure 9.
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Figure 9. Inhomogeneous Hilbert curve made of a combination of 1H, 3H
and 5H curves.Boundary vector diagrams and order 3 approximations.

The sum of the inhomogeneous Hilbert curves from
combinations 2), 3), 6) and 8) result in 28 possible Hilbert
curves completing the proof. �

The analytical representation of the IHHC follows the same
reasoning that lead to equation (13) and will not be repeated
here.

VII. BUILDING IHHC BASED ON A TAG SYSTEM

For the 28 IHHC in two dimensions the tag systems are given
by:

12hn+1 = δo(3hn) u δy(5hn) r 5hn d δa(3hn)

13hn+1 = δg(3hn) u δg(5hn) r δo(5hn) d δx(3hn)
,

for the combination of two 3H and two 5H (Figure 6).

14hn+1 = δo(3hn) u δy(5hn) r 5hn d δa(5hn)

15hn+1 = δg(3hn) u δg(5hn) r δo(5hn) d δ f (5hn)

16hn+1 = δo(3hn) u δy(5hn) r 5hn d δm(5hn)

17hn+1 = δg(3hn) u δg(5hn) r δo(5hn) d δx(5hn)

,

for the combination of one 3H and three 5H (Figure 6).

18hn+1 = δx(4hn) u 0hn r 0hn d δa(4hn)

19hn+1 = δm(4hn) u 0hn r 0hn d δ f (4hn)

20hn+1 = δx(4hn) u 0hn r 0hn d δ f (4hn)

21hn+1 = δ f (4hn) u δg(0hn) r δx(0hn) d δm(4hn)

22hn+1 = δa(4hn) u δg(0hn) r δx(0hn) d δx(4hn)

23hn+1 = δa(4hn) u δg(0hn) r δx(0hn) d δm(4hn)

,

for the combination of two 0H and two 4H (Figure 7).

24hn+1 = δm(0hn) u δg(0hn) r δx(0hn) d δx(4hn)
25hn+1 = δg(0hn) u δg(0hn) r δx(0hn) d δm(4hn)
26hn+1 = δg(0hn) u δg(0hn) r δx(0hn) d δx(4hn)
27hn+1 = δ f (0hn) u 0hn r 0hn d δ f (4hn)
28hn+1 = δ f (0hn) u 0hn r 0hn d δa(4hn)
29hn+1 = δo(0hn) u 0hn r 0hn d δ f (4hn)
30hn+1 = δo(0hn) u 0hn r 0hn d δa(4hn)
31hn+1 = δm(0hn) u δg(0hn) r δx(0hn) d δm(4hn)

,

for the combination of three 0H and one 4H (Figure 7).

32hn+1 = δ f (1hn) u δy(5hn) r 5hn d δ f (1hn)

33hn+1 = δm(1hn) u δg(5hn) r δo(5hn) d δm(1hn)
,

for the combination of two 1H and two 5H (Figure 8).

34hn+1 = δ f (5hn) u δy(5hn) r 5hn d δ f (1hn)

35hn+1 = δa(5hn) u δg(5hn) r δo(5hn) d δm(1hn)

36hn+1 = δx(5hn) u δy(5hn) r 5hn d δ f (1hn)

37hn+1 = δm(5hn) u δg(5hn) r δo(5hn) d δm(1hn)

,

for the combination of one 1H and three 5H (Figure 8).

Finally,

38hn+1 = δo(3hn) u δy(5hn) r 5hn d δ f (1hn)

39hn+1 = δg(3hn) u δg(5hn) r δo(5hn) d δm(1hn)
,

for the combination of one 1H, one 3H and two 5H (Figure 9).

VIII. CONCLUDING REMARKS

Hilbert curves have found applications in a diverse number
of subjects. Literature has almost exclusively dealt with
Hilbert original construction, yet, some of this applications
can benefit from the availability of several curves to choose
from. It has been proven that in two dimensions up to forty
different Hilbert curves can be constructed. The additional
twenty eight curves described in this contribution are named
inhomogeneous, to point out that the n + 1 order curve is
constructed from n order Hilbert curves of different types.

To set a sound base for the use of Hilbert curves, they
need to be well understood geometrically and analytically.
It is also important to know the relation between the
different Hilbert curves. We have reported close analytical
expressions for all HHC and IHHC, which allow to
implement all mappings effectively. Also, a simple and
intuitive construction procedure for all curves, based on
tag system, has been reported, which gives an alternative
procedure for building any of the Hilbert curve to a given
finite order.

Open questions still remain, for example, numerical
calculation up to high orders seems to suggest that all HHC
have the same dilation factor in the infinite iterative limit,
which for the original Hilbert curve was proven to be 6 [15],
yet a proof of such conjecture still has not been reported. The
tools developed here, could be useful in such a proof.

Computer code, developed by the authors, with the
implementation of the tag system allowing the construction
of all two dimensional Hilbert curves of any order can be
requested (estevez@imre.uh.cu).
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