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The 2024 Nobel Prize in Physics was jointly awarded to John
Hopfield and Geoffrey Hinton “for foundational discoveries and
inventions that enable machine learning with artificial neural
networks”. Here we try to explain the meaning of this statement and
why we consider their contribution to be an important advance for
Physics. This prize is probably the definitive demostration that once
again in History, Physics is more than the study of innanimate natural
objects.

El Premio Nobel de Fı́sica del año 2024 fue entregado a John
Hopfield y Geoffrey Hinton por “descubrimientos fundacionales e
invenciones que permiten el aprendizaje automático con redes
neuronales artificiales”. Aquı́ tratamos de explicar el significado de
esta sentencia, y por qué consideramos que sus contribuciones son
importantes avances para la Fı́sica. Este premio es probablemente
la demonstración definitiva de que la Fı́sica, una vez más en la
historia, es más que el estudio de los objetos inanimados de la
naturaleza.

PACS: Physics Nobel prize, artificial intelligence, neural networks

I. INTRODUCTION

In 2024, every educated person with internet access has heard
about ChatGPT. It entered our worldwide web with such
prominence that many believe it may be as disruptive, or
even more so, than the Google search engine. This impact
likely contributed to the Nobel Prize Foundation awarding a
(for some) surprising Nobel Prize in Physics this year.

According to the Nobel Foundation: The Nobel Prize in Physics
2024 was awarded jointly to John J. Hopfield and Geoffrey E. Hinton
“for foundational discoveries and inventions that enable machine
learning with artificial neural networks.”

If the corresponding question is posed to an artificial
intelligence on the web, the answer tends to be more detailed
and specific: The 2024 Nobel Prize in Physics was awarded to
John J. Hopfield and Geoffrey E. Hinton for their foundational
discoveries and inventions that enable machine learning through
artificial neural networks. According to the Royal Swedish Academy
of Sciences, their work has utilized tools from physics to develop
methods that form the basis of today’s powerful machine learning
technologies.

Still, it may not be clear to everyone what ChatGPT has to do
with Physics. Let us explain it in more detail.

II. JOHN HOPFIELD: THE MEMORY

John Hopfield has had an extraordinary career in Physics.
Like many who began their training in the late 1950’s, he
worked extensively in Solid State Physics, where one of
his main contributions was the introduction of the concept
of polariton [1]. After a few years, he became interested

in Biological Physics, particularly in the accuracy of DNA
replication, leading him to introduce the concept of kinetic
proofreading [2].

However, it was in the early 1980’s that he began working
on the subject that earned him this Nobel Prize. Two of his
articles [3, 4] presented an artificial network that could serve
as a memory and that would later be refered to as Hopfield
Network, after him. In short, the system that he proposed
consists of a collection of interconnected artificial neurons
(or nodes), where each neuron can represent a binary state,
typically +1 or −1. The network is fully connected, meaning
each neuron is connected to every other neuron, except for
self-connections. The behavior of a Hopfield Network is
governed by an energy function that quantifies the network’s
state. The energy E can be expressed mathematically as:

E = −
1
2

∑
i, j

wi jxix j −
∑

i

bixi (1)

where wi j are the weights between neurons i and j, and xi
is the state of neuron i. Notice that the states of the neurons
in the Hopfield model are analogous to the orientations of
spins in the Ising model. The weights of the neural network
represent interaction terms, while biases bi play the role of
external fields. From this expression for E, it is clear that
this field of research is intimately connected with Spin Glass
Theory, which granted Giorgio Parisi a Nobel Prize in 2021
(Rev. Cubana Fis. 28, 128 (2021)).
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Figure 1. Hopfield network with five neurons. Each neuron is connected with
the other four. Only a few weights are represented for visual porpouses.

Hopfield had an important intuition that was not previously
explored by the Spin Glass community. He proposed that the
states of the network could evolve following a simple rule.
Define for each neuron a field hi =

∑
j wi jx j, such that xi = 1 if

hi > 0 or −1 when hi < 0. This is known as the Hebb rule; if
the weights are symmetric, such dynamics are guaranteed to
lead to stationary states identified as memories.

The clear connection with Physics goes beyond metaphorical
inspiration; soon it became possible to exploit techniques
developed in disordered systems to analytically compute
relevant quantities. For example, Gardner computed the
storage capacity of a Hopfield Network [5], which is always
P < 0.15N, where N is the number of nodes in the network
and P is the number of patterns that can be reliably stored.
Such analytical results inspired others to seek networks with
larger storage capacities [6] and turned this subject into a new
field of research [7].

III. HINTON: LEARNING STRUCTURES

Geoffrey Hinton studied experimental psychology before
obtaining a PhD in Artificial Intelligence (AI) in 1978, at a
time when personal computers were rare and laptops did not
exist. Just a few years after his PhD, he examined Hopfield
Networks and altered their dynamics. While Hopfield defined
variable values si deterministically by local fields hi, Hinton
proposed that the Network’s state follows a probabilistic
(Boltzmann) distribution:

P({x}) =
e−βE({x})

Z
(2)

where β is a tuning parameter and Z is a normalization
factor recognized by physicists as the partition function of
this problem. This machine is called a Boltzmann Machine
[8, 9] and does not act as memory; instead, it generates new
patterns.

To clarify differences: once trained with P patterns, the
Hopfield model can produce one of those patterns (this
represents memory). In contrast, once trained, a Boltzmann
machine can generate new patterns respecting the statistical
distribution of the training data.

Figure 2. Boltzman Machine

Although initially slow and thus less utilized, a slightly
modified version known as Restricted Boltzmann Machines
(RBMs) [10–12] became versatile tools whose structure
inspired more complex machines emerging in this field.
While both Hopfield and Boltzmann machines are fully
connected networks (each node connects with every other),
RBMs consist of two consecutive layers; when people refer
to Deep Learning, they usually mean machines with multiple
consecutive connected layers—the idea was already there.

Figure 3. Restricted Boltzman Machine

Hinton continued advancing AI through inventions like
backpropagation [13], Deep Belief Networks [14], AlexNet
[15], etc., transforming basic science from the 1980’s into real
applications just a few years later.

IV. ARTIFICIAL INTELIGENCE IN PHYSICS

Artificial Neural Networks (ANNs) are playing an
increasingly important role in modern physics, influencing
a wide range of research areas.

In materials science, for instance, fundamental
properties—from band gaps to emergent behaviors—are
theoretically derived from solving the Schrödinger equation
for electrons. However, the inherent computational
complexity of quantum mechanics renders exact analytical
solutions nearly impossible. ANNs have demonstrated their
usefulness as function approximators [16], learning the
energy landscapes of various models. This deep learning
approach significantly reduces the computational resources
required while maintaining high accuracy and resolution. As
a result, ANNs have facilitated significant progress in tackling
quantum-mechanical many-body problems [17,18], including
the prediction of new photovoltaic materials.
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Similarly, ANNs have improved the resolution of
physics-based climate models without demanding additional
computational power, leveraging the vast amount of data
available on climate variables [19, 20].

Beyond simulation, ANNs serve as powerful tools for
pattern recognition in data analysis. During the search for
the Higgs boson, ANNs were trained to identify specific
patterns in the massive datasets generated at the CERN Large
Electron-Positron Collider (LEP) during the 1990s [21]. Neural
networks also played a crucial role in analyzing the data that
ultimately led to the discovery of the Higgs boson at CERN’s
Large Hadron Collider (LHC) in 2012 [22].

In astronomy and astrophysics, ANNs are widely employed
for tasks such as spectral classification, image processing, and
inference. A recent example is the use of ANNs in analyzing
data from the IceCube neutrino detector at the South Pole,
which led to the creation of a neutrino image of the Milky
Way [23]. Exoplanet transits have been identified by the Kepler
Mission using ANNs [24], and the Event Horizon Telescope
relied on neural networks to process the data that produced
the first-ever image of a black hole at the center of the Milky
Way [25]. Additionally, the Square Kilometre Array (SKA)
uses ANNs to perform regression on high-redshift data, a key
task in its mission to study the universe at centimetre and
metre wavelengths [26].

These are just a few examples of the many applications of
ANNs in modern physics, showcasing their broad impact.
Overall, ANNs have given physics a powerful boost in terms
of simulation and data processing. Their use has lowered
computational costs and made it easier to analyze complex
systems, leading to faster and more accurate results across
many areas of research.

V. CONCLUSIONS

This Nobel Prize in Physics represents more than the
recognition for pioneers who conducted groundbreaking
work; it certifies that Physics must be understood beyond
traditional boundaries. Many were taught in high school that
Physics was merely about studying the motion of inanimate
objects. However, after three decades of active research, We
can not agree more with those who awarded this prize: Physics
encompasses not only problems but also methods, concepts,
and ideas.
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