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The physics of disordered systems is a broad and constantly
evolving field. In this work we focus on the study of discrete
variable models with asymmetric interactions, in particular
the fully-asymmetric ferromagnet and the fully-asymmetric
Sherrington-Kirkpatrick. We use the cavity master equation, a
well-known technique for the out-of-equilibrium dynamics, to derive
average equations describing the time evolution of the magnetization
and the energy in these models. In this way, we recovered previous
results for the magnetization known from the literature and obtained
new equations for the energy. With this work, we contribute to
establish the cavity master equation as one of the most relevant
techniques in the study of out-of-equilibrium systems and clarify its
relationship with previous methods.

La fı́sica de los sistemas desordenados es un campo amplio y en
constante evolución. En este trabajo, nos centramos en el estudio
de modelos de variables discretas con interacciones asimétricas,
especı́ficamente el modelo ferromagnético completamente
asimétrico y el modelo Sherrington-Kirkpatrick completamente
asimétrico. Utilizamos la ecuación maestra de cavidad, una técnica
conocida para describir la dinámica fuera del equilibrio, para derivar
ecuaciones promedio que describen la evolución temporal de
la magnetización y la energı́a. De esta manera, recuperamos
los resultados previos de la literatura sobre la magnetización y
obtuvimos nuevas ecuaciones para la energı́a de estos modelos.
Con este trabajo, contribuimos a asentar la ecuación maestra de
cavidad como una de las técnicas más relevantes en el estudio de
sistemas fuera de equilibrio y esclarecemos su relación con métodos
previos.

Keywords: Cavity Master Equation (Ecuación maestra de cavidad), Discrete Variable Models (Modelos de variables discretas), Dynamic
Cavity Method (Método de cavidad dinámico), Asymmetric Interactions (Interacciones asimétricas).

I. INTRODUCTION

The dynamic cavity method is a powerful tool in statistical
physics and complex systems theory. It is used to derive
both average equations and specific equations for individual
graphs describing the macroscopic behavior of systems with
many interactions. This method has proven to be particularly
useful in the study of disordered systems [1–5]. Some methods
that preced and influenced the dynamic cavity method are:
the static-cavity method [6], the replica method [7], the
dynamic mean-field theory (i.e. IBMF and PBMF) [8–10] and
message-passing algorithms [11].

In this work we explore the application of the dynamic cavity
method to obtain average equations in two specific models:
fully-asymmetric ferromagnet [8] and the fully-asymmetric
Sherrington-Kirkpatrick [12]. Specifically, in the dynamic
cavity method, we use the cavity master equation (CME), first
presented in [1]. These two models selected by us share two
relevant qualities that make them more attractive. First, the
asymmetry in the interactions allows us to propose suitable
factorizations for the system’s joint probability distribution,
obtaining closed forms for the average equations. Second, we
found previous analytic results in the literature in both cases
[8, 9], which is a rare resource when studying the dynamics
of disordered systems. Indeed, we insert this work in a field
where few advances have been made over the years, and it

is therefore important that we manage to connect a recently
developed technique like the CME with known results.

We recover the equations obtained in [8] for the magnetization
of the fully-asymmetric ferromagnet. In addition, we present
here equations for the time evolution of the energy of the
system not yet published and which were recently introduced
in the Ph.D. thesis of [13]. On the other hand, from the
same CME we re-derive the equations for the magnetization
of the fully-asymmetric Sherrington-Kirkpatrick, already
introduced in [9]. In the latter case, we obtain for the first
time a set of equations for the time evolution of the system’s
energy.

The rest of this paper is organized as follows: first, we
present the theoretical basis and how the cavity master
equation is used in both models. Then, we analyze each model
individually and show how to obtain averaged equations
for the magnetization and energy from the cavity master
equation. Finally, their prediction is compared with the results
of numerical simulations.

II. THEORETICAL BASIS

In its first level of approximation, the cavity master equation
is given as follows [1, 14]:
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dpt(σi | σ j)
dt

= −
∑
σ′i

σiσ
′

i pt(σ′i | σ j)
∑
σ∂i\ j

ri(σ′i , σ j)
∏

k∈∂i\ j

pt(σk | σ
′

i )

(1)

This equation is written for the continuous-time dynamics
of a system with N discrete variables σ⃗ = {σ1, . . . , σN}. The
function ri is the spin transition probability for σi, given the
configuration of its neighbors. The dynamics is sequential or
asynchronous, , that is,, we allow only one variable to change
its value at each time t. In this case, we selected Glauber’s
dynamical rule [15]:

(2)ri(σi, σ j, σ∂i\ j) =
α
2

(1 − σi tanh(β
∑

k∈∂i\ j

Jkiσk + βJ jiσ j))

whereαprovides a dynamical time scale, β is the inverse of the
temperature, and the parameters Ji j are the couplings between
interacting spins.

This was a special choice for running the simulations.
However, they can be performed with any transition
probability ri that depends on the instantaneous values of
the spins of the system. The pair probability equation is a
particular case of the closure developed in Ref. [16]:

dPt(σi, σ j)
dt

= −
∑
σ′i

σiσ
′

i Pt(σ′i , σ j)
∑
σ∂i\ j

ri(σ′i , σ j)
∏

k∈∂i\ j

pt(σk | σ
′

i )

−

∑
σ′j

σ jσ
′

j Pt(σi, σ
′

j)
∑
σ∂ j\i

r j(σ′j, σi)
∏

k∈∂ j\i

pt(σk | σ
′

j)

(3)

Taking a marginal of the Eq. (3) we obtain the individual
probabilities P(σ j):

dPt(σ j)
dt

= −
∑
σ′j

σ jσ
′

j

∑
σi

Pt(σi, σ
′

j) ×

×

∑
σ∂ j\i

r j(σ′j, σi)
∏

k∈∂ j\i

pt(σk | σ
′

j) (4)

The Eq. (4) replaces the equation derived in [1]:

(5)

dPt(σ j)
dt

= −
∑
σ′j

σ jσ
′

j

∑
σi

Pt(σ′j) pt(σi | σ
′

j) ×

×

∑
σ∂ j\i

r j(σ′j, σi)
∏

k∈∂ j\i

pt(σk | σ
′

j)

As can be seen the Eq. (5) has a factor Pt(σ′j) pt(σi | σ′j) while
the Eq. (4) has Pt(σi, σ′j) = Pt(σ′j) Pt(σi | σ′j). This means that
the Eq. (4) can be obtained from the Eq. (5) by replacing
the conditional probability of the cavity pt(σi | σ′j) by the
corresponding conditional probability Pt(σi | σ′j).

III. FULLY-ASYMMETRIC FERROMAGNET

III.1. Magnetization

The key point of the following derivation is that, due to fully
asymmetric interactions (unidirectional influence between
variables), the probability distribution of the local field hi =∑

k∈∂i Jkiσi is independent of the corresponding spin σi. In
models like this, where the sum

∑
k Jki Jik vanishes in the

thermodynamic limit, the Onsaguer reaction term [6] is not
present and the spin σi has no effect on the field hi.

The model couplings are obtained from the distribution:

Q(Jki) =
λ

N − 1
δ(Jki − 1) + (1 −

λ
N − 1

) δ(Jki) (6)

We use this distribution to build the graph of interactions.
For every possible pair (ik) in the system, Jki and Jik are
drawn independently. Therefore, for finite λ and in the
thermodynamic limit, the probability of Jki = Jik = 1 vanishes.
This means that in the Eq. (4), given Jki = 1, we know that
Jik = 0. So, the variables p(σk | σ′j) in Eq. (1) do not really
depend on σ′j.

Using this and applying the operator
∑
σi
σi[·] to the Eq. (4)

yields:

dm j(t)
dt

= −αm j(t) + α
∑
σ′j

∑
σi

P(σi, σ
′

j) ×

×

∑
σ∂ j\i

tanh(β
∑
k∈∂ j

Jkjσk)
∏

k∈∂ j\i

(1 + σkνk

2

)
(7)

where we have made p(σk | σ′j) ≡ p(σk) = 1+σkνk
2 and we have

defined mi(t) ≡
∑
σi
σiP(σi) and νi(t) ≡

∑
σi
σip(σi). Explicitly

doing the summation by σ′j in the Eq. (7) and using P(σi) =
1+σimi

2 we get:

dm j(t)
dt

= −αm j(t) + α
∑
σ∂ j

tanh(β
∑
k∈∂ j

Jkjσk) ×

×

(1 + σimi

2

) ∏
k∈∂ j\i

(1 + σkνk

2

)
(8)

With this, we find the distribution of the local fields h j acting
on site j:

D(h j) =
(1 + σimi

2

) ∏
k∈∂ j\i

(1 + σkνk

2

)
(9)

In fact, we could perform the summation over σ′j because the
distribution D(h j) is independent of σ′j as mentioned above.
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Analogously, we can get an equation for dν
dt :

dν j(t)
dt
= −α ν j(t) + α

∑
σ∂ j

tanh(β
∑
k∈∂ j

Jkjσk) ×

×

(1 + σiνi

2

) ∏
k∈∂ j\i

(1 + σkνk

2

)
(10)

Therefore, if we choose an initial condition such that mi(0) =
νi(0) for all i = 1, ...,N, we have mi(t) = νi(t) for all t > 0. This
allows us to rewrite the Eq. (7) as:

(11)
dm j(t)

dt
= −αm j(t) + α

∑
σ∂ j

tanh(β
∑
k∈∂ j

Jkjσk)
∏
k∈∂ j

(1 + σkmk

2

)
We can average this equation over the graph ensemble given
by the Eq. (6). The result is a special case of a result of Derrida
et al. in [8]:

dm̂(t)
dt
= −α m̂(t) + αe−λ S(m̂, β, λ, 0) (12)

where we define:

S(m̂, β, q, σ) =
∞∑

k=0

qk

k!

k∑
n=0

(
k
n

)(1 + m̂
2

)n
×

×

(1 − m̂
2

)k−n
tanh(β(2n − k + σ)) (13)

Now we will try to simplify this equation. Exchanging the
sums and making the change of variables l = k − n, then
n′ = n− l and substituting the modified Bessel function of first
order:

S(m̂, β, q, σ) =
∞∑

n′=−∞

tanh(β(n′ + σ))
(1 + m̂
1 − m̂

)n′/2
In′ (q

√

1 − m̂2)

(14)

This shows that the probability of having a local field ĥ = n,
which does not account for the connectivity of the node is:

D(ĥ=n) =
(1 + m̂
1 − m̂

)n/2
In(λ

√

1 − m̂2) (15)

III.2. Energy

In these out-of-equilibrium models, there is no Hamiltonian
and, therefore, the word energy cannot have the traditional
meaning. However, we used the concept of energy as a
measure of the average intensity of the interactions between
the spins.

If one wants to know how strongly two spins interact,
it becomes necessary to extract information from the pair

probabilities in Eq. (3). As with single-site probabilities, we can
get the equation for average pair probabilities P̂J12,J21 (σ1, σ2) ≡
P̂J1,J2 (σ1, σ2):

dP̂J1,J2 (σ1, σ2)
dt

= −
α
2

∑
σ

(σσ1P̂J1,J2 (σ, σ2) + σσ2P̂J1,J2 (σ1, σ))

+
ασ1

2

[∑
σ

P̂J1,J2 (σ, σ2)
]
e−λ S(m̂, β, λ, J2σ2)

+
ασ2

2

[∑
σ

P̂J1,J2 (σ1, σ)
]
e−λ S(m̂, β, λ, J1σ1)

(16)

Defining the energy as:

(17)
ê(t) = −λ

∫
dJ1dJ2Qc(J1, J2)(J1 + J2) ×

×

∑
σ1,σ2

σ1 σ2 P̂J1,J2 (σ1, σ2)

For this definition of ê(t) to make sense, we average over
pairs (σ1, σ2) that are connected in the graph. In the large
size limit, this means that J1 = 0 and J2 = 1 or J1 = 1 and
J2 = 0. Therefore, we introduce the connected distribution
Qc(J1, J2) = [δ(J1)δ(J2−1)+δ(J2)δ(J1−1)]/2, which in practice is
the joint probability distribution of (J1, J2) conditioned on one
of them being nonzero. Therefore:

(18)ê(t) = −
λ
2

∑
σ1,σ2

σ1 σ2

[
P̂J1=1,J2=0(σ1, σ2) + P̂J1=0,J2=1(σ1, σ2)

]
and we can compute the average system’s energy solving
simultaneously the Eq. (16) and Eq. (12), and then applying
them into Eq. (18). The reader should notice that, when Ji j =
{0, 1}, the energy ê is directly proportional to the correlation ĉ
(more explicitly, ê = −λĉ). However, this definition will be of
use when the couplings Ji j are not binary, as will happen for
the Sherrington-Kirkpatrick model in the next section.

In Fig. 1, we compare the results of the average equations
for λ = 3 with Monte Carlo simulations in graphs consisting
of N = 1000 nodes that were randomly generated using the
distribution in Eq. (6). Our average equations are a good
description for the system’s magnetization and energy for all
times and temperatures that were tested. Both simulations and
average case predictions display the well-known transition
between ferromagnetic and paramagnetic steady states. For
T < 1.8, the magnetization decays to zero in a short time,
while for T > 1.8 the system remains magnetized for all times.
Since our equations for the magnetization recover the exact
result in Ref. [8], we know that all possible discrepancies must
come from the finite size effects in the statistics of Monte Carlo
simulations.

Through the Eq. (12) we have connected the dynamic cavity
method with a known result from a 1987 article [8]. However,
in that article, it was assumed that the system’s size N was
big enough to satisfy λm

≪ N1/2, for a system that gets m
sequential updates from its starting position.
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Figure 1. Comparison between the average equations (continuous lines) and Monte Carlo’s results (dots) in the fully-asymmetric ferromagnet with N = 1000
and λ = 3. All the calculations were done for a system initially fully magnetized in contact with a heat bath at a given temperature T. Dots are the average for
s = 300 different graphs. For each one, n = 10000 Monte Carlo’s histories were averaged.

A common algorithm like Monte Carlo makes typically
O(10N) updates, which being λ ≥ 2 implies that the system’s
size should be big to sustain the former hypothesis.

Our equations do not have such a problem. They have
the advantage of being just the average of single-instance
equations. This means that we could also reproduce the
temporal evolution of a finite system’s magnetization and
energy. It should also be noted that the energy appearing in
Eq. (18) is directly related to the average correlation between
the connected variables.

IV. FULLY-ASYMMETRIC
SHERRINGTON-KIRKPATRICK

The Sherrington-Kirkpatrick model is a theoretical framework
used to describe spin glass systems, introduced in Ref. [12].
It is an Ising model with long-distance interactions where
the couplings between spins can be ferromagnetic or
antiferromagnetic and they are randomly distributed.

The couplings are drawn from this distribution:

Q(Jki) =

√
N

2πJ2 exp { −
N

2J2
(Jki − J0/N)2

} (19)

Unlike the usual Sherrington-Kirkpatrick model, the choice
of Jkl is independent of Jlk. This is the reason for calling
it fully asymmetric Sherrington-Kirkpatrick. Notice that, in
contrast with the fully asymmetric ferromagnet defined over
sparse graphs, the fully-asymmetric Sherrington-Kirkpatrick
is defined over fully connected graphs.

IV.1. Magnetization

The local cavity magnetizations m j(σi) =
∑
σ j
σ jp(σ j | σi) follow

the following equation:

(20)

dm j(σi)
dt

= −αm j(σi) + α
∑
σ′j

p(σ′j|σi)

×

∑
σ∂ j\i

tanh(β
∑
k∈∂ j

Jkjσk)
∏

k∈∂ j\i

p(σk|σ
′

j)

where ∂ j has all the nodes in the system, except for σ j.

Due to the asymmetry of the couplings, the sum
∑

l Jlk Jkl is
of the order O(1/N) and the Onsaguer reaction term is not
present. We can then formally establish that the probabilities
p(σk | σ′j) will not depend on the couplings Jkl, but on Jlk with
l ∈ ∂k.

Averaging Eq. (20) over the disorder:

(21)

dm̂(σ)
dt

= −α m̂(σ) + α
∑
σ′

∫ [ N−2∏
k=1

dJkQ(Jk)
]

×

∫
dJiQ(Ji)p{Jk},Ji (σ

′
|σ)

×

∑
{σk}

tanh(β
∑

k

Jkσk + Jiσ)
∏

k

p̂(σk|σ
′)

where we have explicitly written the dependency of each
p(σ′j | σi) on the system’s couplings. we have defined p̂(σk | σ′j)
as the average over all Jlk from p{Jlk}(σk|σ′j).

As can be seen from Eq. (19) and Eq. (21), the contribution
related to Ji j within the hyperbolic tangent is of order O(1/N).
This means that in the thermodynamic limit we can ignore
the term Jiσ. Also, we can set a starting condition such that
m̂(1) = m̂(−1), then we will have a unique equation for both
and drop the dependency on σ. Then explicitly integrating
over Ji and summing over σ′:

(22)
dm̂
dt
= −α m̂ + α

∫ [ N−2∏
k=1

dJkQ(Jk)
]

×

∑
⟨σk⟩

tanh(β
∑

k

Jkσk)
∏

k

p̂(σk)
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On the other hand, we can similarly obtain an equation for
magnetization defined as M j(t) =

∑
σ j
σ jP j(σ j):

dM̂
dt
= −α M̂ + α

∫ [ N−2∏
k=1

dJkQ(Jk)
]
×

×

∑
σk

tanh(β
∑

k

Jkσk)
∏

k

p̂(σk) (23)

If we set a starting condition such that m̂(0) = M̂(0), we will
have m̂(t) = M̂(t) for all t > 0, and just one equation:

(24)
dm̂
dt
= −α m̂ + α

∫ [ N−2∏
k=1

dJkQ(Jk)
]
×

×

∑
{σk}

tanh(β
∑

k

Jkσk)
∏

k

p̂(σk)

Then, we need to compute the Gaussian integral in the second
term on the right side:

(25)I(m̂, β, J0, J, η) =
∫ [ N−2∏

k=1

dJkQ(Jk)
]
×

×

∑
{σk}

tanh [β(
∑

k

Jkσk + η)]
∏

k

p̂(σk)

As all variables Jk follow a Gaussian distribution, the variable
ζ =

∑
k Jkσk will also follow a Gaussian distribution. Then

defining Dy ≡ e−y2/2/
√

2πwhere y = (ζ − ⟨ζ⟩)/J2 we get:

I(m̂, β, J0, J, η) =
∫

Dy
∑
{σk}

[∏
k

p̂(σk)
]

tanh [β(
J0

N

∑
k

σk+ J y+η)]

(26)

For N ≫ 1, the variable h = 1
N

∑
k σk is a sum of a great number

of independent and identically distributed variables, also
distributed as a Gaussian. Therefore, at the thermodynamic
limit we get I(m̂, β, J0, J, η):

I(m̂, β, J0, J, η) =
∫

Dy tanh [β(J0 m̂ + J y + η)] (27)

The equation for system’s magnetization is then:

dm̂
dt
= −α m̂ + αI(m̂, β, J0, J, 0) (28)

which reproduces the analytical results presented in [9].

IV.2. Energy

We will also obtain an equation for the energy of the system
as we did in Eq. (17):

ê(t) = −
N
2

∫
dJ1dJ2Q(J1, J2)

(J1 + J2)
2

×

∑
σ1,σ2

σ1 σ2 P̂J1,J2 (σ1, σ2)

(29)

As last time, this is not the usual energy; it is more like a
measure of the intensity of spin interactions. Starting from an
analogous equation to Eq. (16):

(30)

dP̂J1,J2 (σ1, σ2)
dt

= −
α
2

∑
σ

(σσ1P̂J1,J2 (σ, σ2) + σσ2P̂J1,J2 (σ1, σ))

+
ασ1

2

[∑
σ

P̂J1,J2 (σ, σ2)
]

I(m̂, β, J0, J, J2σ2)

+
ασ2

2

[∑
σ

P̂J1,J2 (σ1, σ)
]

I(m̂, β, J0, J, J1σ1)

We can then apply the operator:
−N/2

∫
dJ1dJ2Q(J1, J2)(J1 + J2)/2

∑
σ1

∑
σ2
σ1σ2[·] and get:

(31)

dê(t)
dt
= −2αê(t) −

αN
2

∑
σ

σ
[ ∫

dJ1Q(J1) J1 P̂J1 (σ)
]

×

∫
dJ2Q(J2)I(m̂, β, J0, J, J2σ)

−
αN

2

∑
σ

σ
[ ∫

dJ1Q(J1) P̂J1 (σ)
]

×

∫
dJ2Q(J2) J2 I(m̂, β, J0, J, J2σ)

We know that in the thermodynamic limit:

∫
dJ2Q(J2)I(m̂, β, J0, J, J2σ) = I(m̂, β, J0, J, 0) (32)
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0 10 20 30 40 50
t0.0

0.1

0.2

0.3

0.4

0.5
m

J0=1.0 J=1.0

T=0.01

T=0.5

T=1

T=1.5

10 20 30 40 50
t

-0.5

-0.4

-0.3

-0.2

-0.1

0.0
e

J0=1.0 J=1.0

T=0.01

T=0.5

T=1

T=1.5

0 10 20 30 40 50
t0.0

0.2

0.4

0.6

0.8

1.0
m

J0=2.0 J=1.0

T=1

T=1.3

T=1.5

T=1.7

T=2

10 20 30 40 50
t

-1.0

-0.8

-0.6

-0.4

-0.2

0.0
e

J0=2.0 J=1.0

T=1.0

T=1.3

T=1.5

T=1.7

T=2.0

Figure 2. Comparison between average equations (continuous lines) and Monte Carlo’s results (dots) in the fully-asymmetric Sherrington-Kirkpatrick. All
calculations were done for an initially fully magnetized system in contact with a heat bath at a given temperature T. For each one graph, n = 100 Monte
Carlo’s histories were averaged. Panels (a) and (b): System size is N = 500. Points are averages taken over s = 100 graphs. Panels (c) and (d): System size
is N = 100. Points are averages taken over s = 1000 graphs.

This leaves us with the task of solving the following integrals:

(33)N⟨J1m̂J1⟩ ≡N
∫

dJ1Q(J1) J1 P̂J1 (σ)

N⟨J2 I(J2σ)⟩ ≡N
∫

dJ2Q(J2) J2 I(m̂, β, J0, J, J2σ)

where m̂J1 =
∑
σ σP̂J1 (σ).

In all of the following derivations, we will use the fact that
the integrals are uniformly convergent. Now let’s integrate
Eq. (33) by parts with:

u =
∫

Dy tanh
[
β(J0m̂ + Jy + J2σ)

]
(34)

dv = dJ2

√
N

2πJ2 exp
{
−

N
2J2 (J2 −

J0

N
)2
}

J2 (35)

Then, we have:

N⟨J2 I(J2σ)⟩ = N(uv
∣∣∣∞
−∞
−

∫
∞

−∞

vdu) (36)

Using lı́mx→±∞ erf(x) = lı́mx→±∞ tanh(x) = ±1:

uv
∣∣∣∞
−∞
=

J0σ

2N

∫
Dy −

J0σ

2N

∫
Dy = 0 (37)

In the other side:

(38)
∫
∞

−∞

vdu = I1 + I2

where we have:

(39a)I1 = βσ

∫
∞

−∞

dJ2

(
−

J2

N

√
N

2πJ2 exp
{
−

N
2J2 (J2 −

J0

N
)2

})
×

∫
Dy cosh−2 [

β(J0m̂ + Jy + J2σ)
]

(39b)I2 = βσ

∫
∞

−∞

dJ2
J0

2N
erf

[√
N

2J2 (J2 −
J0

N
)
]

×

∫
Dy cosh−2 [

β(J0m̂ + Jy + J2σ)
]

At Eq. (39a) we have the factor exp
{
−

N
2J2 (J2 −

J0
N )2

}
, which

when N is big, the gaussian will be localized around J2 =
J0
N .

Therefore is safe to make the substitution J2 =
J0
N inside the

hyperbolic cosine and then integrating over J2:
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(40)I1 ≈ −
βσJ2

N

∫
Dy cosh−2

[
β(J0m̂ + Jy +

J0

N
σ)

]

At Eq. (39b), we have the factor erf
[√

N
2J2 (J2 −

J0
N )

]
. When N is

big enough, erf
[√

N
2J2 (J2 −

J0
N )

]
≈ sgn(J2 −

J0
N ).

Then exchanging the integral signs and integrating:

(41)I2 ≈ −
J0

N

∫
Dy tanh

[
β(J0m̂ + Jy +

J0

N
σ)

]
Putting it all together and ignoring the J0

Nσ inside
the hyperbolic functions because they vanish in the
thermodynamic limit, we get finally:

(42)N⟨J2 I(J2σ)⟩ = J0

∫
Dy tanh

[
β(J0m̂ + Jy)

]
+ βσJ2

∫
Dy cosh−2 [

β(J0m̂ + Jy)
]

To get an equation for N⟨J1m̂J1⟩ we just multiply by J1 the
differential equation for the variable m̂J1 , and then integrating
the result with weight Q(J1):

(43)N
d⟨J1m̂J1⟩

dt
= −αN⟨J1m̂J1⟩ + αJ0

∫
Dy tanh [β(J0 m̂

+ J y)] + αm̂βJ2
∫

Dy cosh−2 [β(J0 m̂ + J y)]

where there was done an integration by parts to analogously
get the second and third terms.

We can solve numerically the system of equations formed by
Eq. (31), Eq. (32), Eq. (42) and Eq. (43) with starting conditions

m̂(0) = m0, ê(0) = −
J0m2

0
2 and N⟨J1m̂J1⟩(0) = J0m0.

In Figs. 2a and 2b, the results from the average equations are
compared with Monte Carlo simulations, for J0 = 1,J = 1 and
N = 500. The system’s magnetization is well described by
our theory, which is to be expected since we again recover
known results from the literature that are exact. In the same
system, our equations predict steady state energies a bit higher
than the ones obtained in the simulations. When J0 = J = 1,
there is no ferromagnetic region and the dynamics always
go to a non-magnetized steady state. This does not mean the
dynamics is trivial, since correlations do emerge when the
temperature is lowered. This mechanism, possibly associated
with a glassy dynamics, is not captured in Fig. 2a, where the
theory is close to the simulations for high temperatures but
fails for low temperatures.

However, we can show that the equations work better in
systems with stronger ferromagnetic interactions. In Figs. 2c

and Figs. 2d, we can see that for J0 = 2,J = 1 and
N = 100, our theory describes adequately the system’s
magnetization and the energy as well. Here, we do have
a ferromagnetic-paramagnetic transition and the emergence
of correlations for low temperatures is due to ferromagnetic
interactions. This is, instead, well captured by our equations.

V. CONCLUSIONS

We developed a method to get average case versions of the
cavity master equation [1] in asymmetric models. The ideas
and the methods can be easily extended to other models.

Our method recovers exact results already known
in the literature for the magnetizations of the
fully-asymmetric ferromagnet and Sherrington-Kirkpatrick
models. Furthermore, we obtain new equations for the energy
of both models that reproduce the simulations in most cases.

For specific parameters our equations predict steady-states
energies a bit higher than those of the simulations in the
fully-asymmetric Sherrington-Kirkpatrick. This is associated
to the emergence of non-trivial correlations in the dynamics
without magnetization, possibly due to the presence of
a glassy dynamics. We plan to analyze the discrepancies
observed in this particular case in the future.
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