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The concept of stochastic resetting emerged in 2011, introducing
a simple modification to [15] the one dimensional Random
Walk that leads to a stationary distribution and where the
first-passage time can be easily optimized. In this context, we
will investigate what happens when modeling these phenomena
in a framework where a Brownian particle alternates between
different states. We will derive the Fokker-Planck equations
of the model and analyze the behavior of the probability
density of the particle positions for long times and solve the
corresponding first-passage time problem. Contrasting with the
two-state Brownian motion, we will observe how resetting ensures a
stationary behavior in the long run leading to a finite expectation
for the first-passage problem. Finally, we will demonstrate how the
existence of this expectation guarantees minimum values by varying
the resetting or state-change parameters.

La idea del reajuste estocástico aparece en 2011 abriendo la
posibilidad de interpretar un nuevo grupo de fenómenos, y sobre
todo llamando la atención sobre las propiedades favorables de
este tipo de modelos. Con este sentido estudiaremos qué sucede
al modelar este tipo de fenómenos en un espacio de alternancia
de los dos estados en que se mueve una partı́cula browniana.
Deduciremos las ecuaciones de Fokker-Planck del modelo y a
partir de ellas trabajaremos el comportamiento de la partı́cula para
tiempos largos y el problema del primer cruce. En comparación
con el movimiento browniano clásico en dos estados podremos
ver cómo el reajuste nos garantiza un comportamiento estacionario
para tiempos largos, y por tanto una esperanza finita para el
problema del primer cruce. Por último, veremos como la existencia
de la esperanza nos garantiza valores mı́nimos de esta al realizar
variaciones sobre los parámetros de reajuste o cambio de estados.

PACS: Stochastic resetting (restablecimiento estocástico); double diffusivity (doble difusividad); first-passage time (tiempo de primer paso);
Fokker-Planck Equation (ecuación de Fokker-Planck); brownian motion (movimiento browniano).

I. INTRODUCTION

The Brownian motion (BM) is one of the most studied
stochastic processes of nature. It has been extensively used
to model the molecular movement in a fluid [1], financial
trends [2], animal foraging behavior [3], optimal search
algorithms [4], and others. Among the various variations of
the BM, in reference [5] the authors add to the Brownian
motion a stochastic resetting process that follows a Poisson
distribution. While the standard Browian motion does not
reach a stationary distribution, introducing a stochastic
resetting provides to the process a stationary character and a
finite expectation for the first-passage problem. These authors
have also shown that there exists a value of resetting rate r
that minizes this expectation [5].

The idea of stochastic resetting has gained special relevance
in the last decade due to its ability to describe a variety of
processes in different disciplines. In this way, its incorporation
can be observed in various variations of Brownian motion:
drifted BM [6], scaled BM [7], and fractional BM [8]; as well
as in different studies on animal behavior [9] and genome
analysis [10].

To exemplify our problem, we can consider a miner searching
for gold in a jungle as a high uncertainty environment.
Let us assume that the miner motion is characterized by a
diffusion constant, and that the value of this diffusion varies
depending on whether it rains (low diffusion) or it is sunny.

This corresponds to a Brownian motion in a two state problem.
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Figure 1. Trajectories of a miner searching for gold ina jungle. (-50,50) is the
starting point of the miner. The house and the cave are the points to which
he resets depending on whether the weather is sunny or rainy, respectively.
The journey ends in this case when he finds the gold. The legend shows the
diffusion constants in each state and the rates for resetting and state change.

The two-state problem has a significant body of work in the
literature [11–13]. However, similar to the standard Brownian
motion, this process will never reach a steady state, and the
expectation of the first-passage time is also divergent [14].
Here, we will ask questions such as, what will happen if
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the miner returns to a specific fixed point with a certain
probability based on the weather conditions? How will the
miner’s search behavior evolve over long times? Will the
expectation of the miner finding gold be finite? Is it significant
that the resetting rate depends on the weather state? (see
Figure 1).

We focus on the general one-dimensional modeling of
Brownian motion with resetting in two states, addressing
it in its most general form, which involves problems
with two states and two resets to different positions [15].
Using the Fokker-Planck equation, we evaluate the system’s
behavior over long times. Then, by leveraging the stationary
characteristics of the process, we explore the convergence of
the first-passage expectation and the existence of a non-trivial
minimum for a single resetting point. The primary reason
for considering a single resetting point in the first-passage
problem is to avoid added complexity in this initial approach.
We chose to work with the relationship between diffusions
rather than the relationship involving diffusion coefficients
and reset points. Finally, we examine the behavior of this
minimum across various parameter sets.

II. THE MODEL AND FOKKER-PLANCK EQUATION

Before obtaining the equations that will describe our
Two-State Stochastic Resetting Brownian motion (BMR2S),
let’s frame its definition properly for one dimension. The
problem to be addressed is that of a particle that starts at
a point x0 in state i with probability qi, and for each moment
t > 0, if it is in state i, at instant dt it can

transit from state i to state j , i with rate s jdt (i, j = 1, 2),

move with BM of diffusion Di,

reset its position to a fixed position xi at a rate of ridt.

Let Pi(x, t) denote the density function describing the
probability of the particle in a BMR2S motion being at position
x in state i at time t. Additionally, we will take φi

∆t(∆x) as the
density function of the Brownian motion with diffusion Di (i.e.
a Gaussian function over ∆x with distribution N(0, 2D∆t)), and
Pi(t) as the probability of the particle being in state i at time
t. The description of our BMR2S allows us to consider, for
∆t << 1, the equations

Pi(x, t + ∆t) =

∞∫
−∞

φi
∆t(∆x)Pi(x − ∆x, t)d(∆x)

+ si∆tP j(x, t) + ri∆tPi(t)δ(x − xi) (1)

for i , j ∈ {1, 2} and δ(y) the Dirac delta function.

Regarding the functions Pi(t), it is sufficient to note that
P1(t) +P2(t) = 1, and P1(t) is given by

P1(t) = q1 exp[−t(s1 + s2)] +
s1 − s1 exp[−t(s1 + s2)]

s1 + s2
(2)

where q1 represents the probability of starting in state 1. For
simplicity, we set q1 = s1

s1+s2
, ensuring stationary behavior over

time, i.e., Pi = si
s1+s2

.

The three terms at (1) describe, in a time interval ∆t, the
possible arrivals at position x at time t + ∆t. These are:
the probability of moving in a BM with diffusion Di, the
probability of transitioning to state i from state j, and the
probability of a resetting occurrence to position xi. It is
important to note that as ∆t→ 0,

∞∫
−∞

φi
∆t(∆x)d(∆x) + ri∆t + s j∆t ≈ 1. (3)

Proceeding similarly to the literature (see ref. [8]) on (1) and
using (3), we obtain that the Fokker-Planck equations are, for
i ∈ {1, 2}:

∂Pi(x, t)
∂t

= Di
∂2Pi(x, t)
∂x2 − (ri + s j)Pi(x, t)

+ siP j(x, t) + riPi(t)δ(x − xi). (4)

with j , i ∈ {1, 2}. Once we have the Fokker-Planck equations
derived, we can now address the behavior of Pi(x, t) for long
times and the first-passage time problem.

III. LONG-TIME DESCRIPTION

The probability density equation of the process as a function
of position and time is given by P(x, t) = P1(x, t) + P2(x, t). Due
to the uniqueness of the solution [12] of our Fokker-Planck
system (4), it is sufficient to find just one solution to the
problem. We then perform both a Laplace and Fourier
transforms to transform the partial differential equation in an
alegbraic expression whose inverse determines the probability
density of the problem for all times. However starting from
the well-known limit [16] it is straighforward to show that, if
we denote as L the Laplace transform,

lı́m
z→0

zL[ f (t)](z) = lı́m
t→∞

f (t), (5)

that defines the stationary behavior of our function and avoids
the complex calculation of the inverse of the transforms.

Computing the previous limit, we find that when taking
Λ±i =

√
λ+e−

√
λ± |x−xi |−

√
λ−e−

√
λ∓ |x−xi |, with λ± =

(s1+r2)
2D2

+
(s2+r1)

2D1
±√[

(s1+r2)
2D2
−

(s2+r1)
2D1

]2
+ s1s2

D1D2
, our stationary distribution Pss will

be

Pss(x) =
r1s1

(
D2
√
λ+λ−Λ+

1 + (s1 + s2 + r2)Λ−1
)

2D1D2(s1 + s2)
√
λ+λ−(λ+ − λ−)

+
r2s2

(
D1
√
λ+λ−Λ+

2 + (s1 + s2 + r1)Λ−2
)

2D1D2(s1 + s2)
√
λ+λ−(λ+ − λ−)

. (6)

Unlike the case of two states without stochastic resetting, in
our scenario, we will have a well-defined stationary state, the
behavior of which can be observed in Fig. 2.
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Figure 2. Behaviour of the density function (6) for a given set of parameters
over very large times, i.e. as t → ∞. The figure illustrates the relationships
between the parameters and how they influence the behavior of the
probability density function. In this case, s2 > s1, r2 > r1, and D1 > D2
contribute to a higher probability concentration around x2, meaning that the
particle is more likely to stay near x2 for long times. The black dots represent
the expected value for each probability density function.

If we quickly review equation (6), we observe that there are
two weights, one for each xi. By adjusting the parameters
Di, ri, and si, we can see how these weights vary almost
proportionally (inversely for Di and directly for ri and si).
In summary, if we look at probability concentration around xi as
the probability that the particle is within some vicinity of xi,
we find that:

Di > D j results in a lower probability concentration at xi
with respect to x j,

ri > r j leads to a higher probability concentration at xi
with respect to x j,

si > s j leads to a higher probability concentration at xi
with respect to x j,

If x1 = x2, r1 = r2, and D1 = D2, the behavior is the same
as for a single state with resetting.

IV. FIRST-PASSAGE TIME PROBLEM

The mean first-passage time of a stochastic process is defined
in the following way: given a stochastic process X(t) with
initial condition x0 > 0, what is the the expectation of
the random variable representing the first passage time to
x = 0? In short, the expectation of the random variable
t f = ı́nft{X(t) 6 0}).

To compute this quantity we make use of the well-known
Chapman-Kolmogorov equation for Markov stochastic
processes,

P(0, t|x0, 0) =

t∫
0

F(x0, τ)P(0, t|0, τ)dτ, (7)

where P and F represent the probability densities of
the process under consideration and the first-passage,
respectively. To calculate the expectation of the first-passage

T(x0), we exploit a formula previously derived from the
properties of the Laplace Transform and the survival
probability function [8, 14],

T(x0) = lı́m
z→0

1 − F̂(x0, z)
z

. (8)

In other words, given the equation (7), we only need the
Laplace transform of F to calculate T. This is not difficult,
because of the Laplace Transform of a convolution of two
functions is the product of the Laplace transform of these
functions.

The limit of equation (8) is confirmed to exist if at least one of
the inequalities r1s1 , 0 or r2s2 , 0 holds. This means that there
must be at least one state with non-zero stochastic resetting
and a non-zero rate of transition to it.

Next, we derive the equation for the expectation T and
simplify it by introducing the substitutions α = D1

D2
and

θ = x0
√

D2
. Here, α denotes the ratio of diffusions in both

states, and θ represents the relationship between the resetting
position and the displacement. Consequently, our expression
for the expectation (8) can be simplified to T = Ψ

Φ , where

Ψ =
√
µ+

(
1 − e−

√
µ−θ

) [
β − (s1 + s2α)µ−

]
−
√
µ−

(
1 − e−

√
µ+θ

) [
β − (s1 + s2α)µ+

]
Φ =

√
µ+e−

√
µ−θ

[
γ − (r1s1 + αr2s2)µ−

]
−
√
µ−e−

√
µ+θ

[
γ − (r1s1 + αr2s2)µ+

]
(9)

with µ± :=
α(s1+r2)+(s2+r1)±

√
[α(s1+r2)−(s2+r1)]2+4αs1s2

2α β = (s1 + s2)2 +
s1r2 + s2r1 and γ = (s1 + s2)(r1s1 + r2s2 + r1r2).

With this expression, we then ask, in a similar way as in
ref. [5], whether the expectation of the first-passage time can
be minimized by adjusting the resetting parameters r1 and r2.
To address this, we numerically compute the values of r1 and
r2 that minimize T for specific parameter sets. As mentioned
at the beginning, we assume in this case that x0 = x1 = x2.

Let’s denote this minimum of T as Tm. Subsequently, we
compare this with the outcome of optimizing T considering a
single parameter r = r1 = r2. In this case, the miner returns to
its original position at a rate that does not depend on its state.
We denote this minium as Tr. These two values are compared
with the extreme cases, i.e., with the prediction obtained in
ref. [5] for one state. We denote this time as: T = Te and
is obtained when ri = r∗i = c2Di

x2
0

, where c ≈ 1.5441. It is not
difficult to verify that these r∗i values yield the minimum of
T when our two-state process can be simplified to a single
diffusion process—either due to equivalent diffusions in both
states (i.e., D1 = D2) or when the mean time in one of the two
states is zero (i.e., s1s2 = 0).

Let us first examine how Te depends on α, θ, s1, and s2.
If we fix θ and increase the value of α, it is equivalent to
enhancing the diffusion in one of the states. In this scenario, as
diffusion increases, the expectation time decreases, indicating
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an increased probability of an earlier occurrence of the
first-passage (see Figure 3).

1 2 3 4 5

50

100

150

200

250

α

T
e

First-passage Te s1
0

1

8

1

4

1

2

1

2

4

8

∞

Figure 3. Dependence of Te on α for different values of s1. In all cases, θ = 10
and s2 = 2 are used. It can be checked that when α = 1, the resetting point is
unique, and the minimum Tm = Te remains constant regardless of the values
of s1 and s2. For the extreme cases s1 = 0 and s1 = ∞, it can be verified that
these are equivalent to a scenario in which there is a transition between the
two states, but both have equal diffusion. Specifically, s1 = 0 corresponds to
the case where both states have diffusion D2, and s1 = ∞ corresponds to the
case where both states have diffusion D1 = αD2. In both cases, the values of
the parameters s1 and s2 do not affect the expected value.

On the other hand, for α > 1, we observe that the expectation
Te will be bounded below by the case where s1

s2
→ ∞,

representing a situation in which the particle primarily moves
in the state with large diffusion. It can be verified that the
global minimum of T, when optimizing over (s1, s2, r1, r2), is
Te as s1

s2
→ ∞. The alternative scenario occurs when s1

s2
→ 0,

which corresponds to the particle spending most of its time
in the state with low diffusion. Figure 3 illustrates how the
values of s1

s1+s2
and s2

s1+s2
function as a kind of weighted average

between the two extremes, s1
s2
→ ∞ and s1

s2
→ 0. Overall, this

reinforces the notion that a larger *average diffusion* leads to
a reduction in the expectation value of the first-passage time.
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Figure 4. Values of T(r1, r2) given the values of (s1, s2, α, θ) = (1, 2, 1, 1). It
can be observed how the values of Tm,Tr, and Te coincide, starting from the
condition α = 1. As shown in Figure 3, it can also be analytically verified that
the values of s1 and s2 have no impact on the outcome.

In terms of the miner’s logic, this would imply, as a first

approximation, that the higher the ratio of sunny to rainy
days—favoring sunny weather—the probability of finding
the gold mine increases with the number of sunny days and
reaches its maximum when it never rains. Let’s now see
what happens optimizing with respect to the two resetting
parameters (r1, r2). We first look to the case α = 1 (i.e. D1 = D2).
In this scenario, setting r = r1 = r2 in the expression of T (9), it
can be shown analytically that the optimal solution is achieved
when r = r∗1 = r∗2. Under this condition, Tr = Te. Moreover, we
can show that optimizing with respect to both parameters,
r1 and r2, is equivalent to fix them to r1 = r∗1 and r2 = r∗2.
Therefore, for D1 = D2 and a single resetting point, the values
of Tr, Tm, and Te coincide (see Figure 4).
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graph is enlarged around which Tm,Tr, and Te are found. It is important to
note that in this case, Tm as a minimum is taken locally, that is, it is numerically
calculated taking Tr as the starting point, so Tm is not necessarily a minimum
over (r1, r2) ∈ R2
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Now, let’s assume without loss of generality, that α > 1.
Initially, as shown in Figure 5.a, for the parameter values
(s1, s2, α, θ) = (1, 2, 5, 1), there exists a local minimum Tm
reached when r1 , r2. This local minimum, a candidate for
Tm, is already lower than both Tr and Te (Figure 5). Moreover,
it is notable from Figure 5 that beyond a certain threshold of
r2, the values of T starts to decrease, indicating the possibility
of another global minimum.

Indeed, numerous numerical simulations show that letting
r2 →∞ often yields a global minimum. What does this mean?
When r2 → ∞, it effectively removes diffusive movement in
state 2 (the state with lower diffusion). Each time the system
enters state 2, the particle immediately resets to position x0
and remains there for an exponential period corresponding
to the time spent in state 2. Movement resumes only when
transitioning to state 1. In the miner language: do not go outside
if it’s raining.

To deduce the value of r1 for which T reaches its minimum
when r2 → ∞, let’s observe that the transition to state 2 acts
as a resetting at a rate of s2, and the time spent in state 2
serves as a penalty on the first-passage time, as the particle
remains at x0. This scenario becomes equivalent to a stochastic
resetting with one diffusion state process, where the resetting
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parameter is r1 + s2, and for each trajectory, each transition to
s2 penalizes the time of the first-passage with an exponential
random variable of parameter s1.

Therefore, the minimum would be given by the optimal
resetting with respect to the single-state diffusion problem [5],
taking into account the value of the state change. That is, when
r2 →∞, the optimal value for r1 will be given by

r1 = máx
0,

c2D1

x2
0

− s2

 . (10)

The fact that 0 is the best value when c2D1
x0
− s2 < 0 results

from the monotonicity of the expectation over the resetting
parameter for the single-state problem, as in such a case the
parameter s2 will act as the resetting parameter.
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Figure 6. Optimized θ = 1 and a function of s1 = 2 for different α =
2, 3, 4, 5 values. The calculations are performed numerically, with 5000 used
to represent a sufficiently large value that approximates r2 → ∞. When r2
decreases, it reaches a local minimum, as shown in Figure 5, so r2 is greater
than zero but very small compared to 5000 in this case. It can be observed
the phase transition of r2 based on the values of s2.

Figure 7. For θ = 1 and s1 = 2, this figure illustrates the behavior of r1 as a
function of s2 for α = 2, 3, 4, 5. Initially, r1 decreases linearly to zero, consistent
with Equation (10). Beyond a critical s2 point, the local minimum becomes the
global minimum, resulting in a jump to a non-zero r1 value, which then begins
to decrease again.

Examining the global minimum between the local candidate
and the candidate obtained by letting r2 tend to infinity, we

observe a transition that depends on the relationship between
s1 and s2. Specifically, if we fix s1 we find that for low values of
s2 (i.e., less time in state 2), letting r2 tend to infinity yields the
global minimum. However, for high values of s2 (i.e., when
it ’rains’ frequently, in terms of the miner’s logic), the local
minimum actually represents the global minimum (see Figure
6).

Moreover, we see in Figure 7 that the behavior of r1 aligns
with the prediction made in Equation (10), specifically for the
values where r2 → ∞ in Figure 6. In this case, r1 decreases
linearly as a function of s2 until it reaches zero. However, after
the transition point, where r2 becomes finite in relation to s2, a
local minimum appears for both r1 and r2, with r1 , 0. Beyond
this point, for sufficiently large values of s2, r1 decreases until,
for sufficiently large values of s2, r2 returns to zero.

V. CONCLUSIONS

In this article, we have summarized key findings from our
work on two central aspects of a Brownian Motion with
stochastic resetting in two states: the long-term behavior
and the first-passage problem. We began by deriving the
Fokker-Planck equations that characterize these processes
using their Markovian properties. From these equations,
we obtained the stationary state density function, along
with an example illustrating the density’s behavior across
different parameter sets, highlighting how various parameters
influence the density function.

For the first-passage problem, we derived a general
expectation equation for the process and simplified the
analysis by reducing the dynamics to a case where the
two resetting points coincide, allowing for more direct
comparison. We established that the expectation for the
process is bounded by the expectations for single-diffusion
cases, and we examined the monotonic behavior of T(si)
while keeping s j fixed. We then analyzed how the expectation
behaves relative to the values of r1 and r2, as well as the roles
of the parameters s1, s2, and α. Notably, we found that while
the minimum candidates for the expectation coincide when
α = 1, this is not the case for α , 1.

Our main results reveal that the resetting rates exhibit
two distinct states separated by a well-defined transition,
depending on the relationships between α, s1, and s2. These
states correspond to cases where r2 tends to infinity and where
r2 remains finite.
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[9] A. Pal, L. Kuśmierz, and S. Reuveni, Phys. Rev. Research

2, 043174 (2020).
[10] D. Sánchez-Taltavull, É. Roldan, A. Lisica, and S. W.

Grill, Phys. Rev. E 93, 062411 (2016).
[11] E. C. Aifantis and J. M. Hill, Quart. J. Mech. Appl. Math.

(1980).
[12] A. I. Lee and J. M. Hill, J. Math. Analysis Appl. 89,

530–557 (1982).

[13] B. D. Hughes, Random Walks and Random
Environments, Volume 1 (Clarendon Press, Oxford,
1995).

[14] J. J. Dı́az and R. Mulet, “Stochastic Resetting for the
Two States Brownian Motion Problem,” Diploma Thesis,
Universidad de La Habana, La Habana, 2024.

[15] L. Dagdug, P. J. Salgado, and D. Boyer,
arXiv:2311.11897v1 (2023).
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