RADIOACTIVITY LEVELS AND RADIATION HAZARD IN SANDS FROM CUBAN BEACHES NIVELES DE RADIACTIVIDAD Y PELIGROSIDAD POR RADIACION EN ARENAS DE PLAYAS CUBANAS

G. Pérez^a, H. Cartas^b, A. O. Casanova^a, O. Díaz^{a†}

a) Dpto. de Física Nuclear, Instituto de Tecnologías y Ciencias Aplicadas, Universidad de La Habana, La Habana, Cuba; odrizo@instec.cu[†] b) Centro de Estudios Ambientales, Cienfuegos, Cuba.

+ corresponding author

Recibido 18/11/2024; Aceptado 20/5/2025

Keywords: radioactivity (radiactividad); radiation hazard (radiación peligrosa); beach sands (arenas de playa); Cuba.

The natural radionuclides ²³⁸U, ²³²Th and ⁴⁰K are called primordial radionuclides, because they are present on the Earth since the creation of the planet. The nonuniform distribution of natural radionuclides has been observed in various environmental matrices such as soil, sand, water, air, sediment, etc. Natural radionuclides often reach these matrices by the weathering process of rocks and other materials.

The purpose of the present study was to determine the levels of natural radioactivity (226 Ra, 232 Th and 40 K) on the sands of some Cuban white sand beaches (Fig. 1), in order to assess the potential radiological risks to their users.

Figure 1. Location of the studied sand beaches

Beach sand samples, which reached equilibrium at the end of a time of one month, were counted for 48 hours on a well calibrated HPGe gamma spectrometer at the Center for Environmental Studies at Cienfuegos, Cuba [1]. In the study, while ⁴⁰K activity concentrations were determined directly based on 1460 keV gamma ray, the ²³⁸U and ²³²Th activity concentrations were indirectly determined from the daughter nuclides of these radionuclides. The ²¹⁴Pb or ²¹⁴Bi activity concentrations of the samples need to be accepted as a measure of the ²²⁶Ra content rather than ²³⁸U itself [2] . That is, in the analysis of the samples, for ²²⁶Ra activity, ²¹⁴Bi's 609 keV and ²¹⁴Pb's 352 keV gamma transitions were used, while for ²³²Th activity, ²²⁸Ac's 911 keV gamma transition was used. The activity concentrations of natural radionuclides

for beach sand samples under study, and some reported worldwide, are presented in Table 1. The measured activities are directly related to natural gamma radiation and represent the geological background of the rock settings. The only exception is the activity of ²³²Th measured on the beach sand of La Coloma, with a mean activity slightly higher than the mean concentration of ²³²Th worldwide (30 Bq \cdot kg⁻¹ [3]).

Table 1. Activity concentrations of $^{226}\text{Ra},\,^{232}\text{Th}$ and ^{40}K (main \pm SD, in $\text{Bq}\cdot\text{kg}^{-1})$ in Cuban and worldwide beach sands.

Beach	²²⁶ Ra	²³² Th	$^{40}\mathbf{K}$
La Coloma, Cuba	19 ± 1	37 ± 1	40 ± 8
Cajio, Cuba	6 ± 1	6 ± 3	47 ± 7
Rancho Luna, Cuba	4.5 ± 0.7	2.6 ± 0.5	274 ± 12
Cayo Coco, Cuba	12 ± 1	4.6 ± 0.6	10.6 ± 0.7
Cayo Guillermo, Cuba	5.7±0.7	2.1±0.4	135±8
Guardalavaca, Cuba	2.1±0.7	1.5 ± 0.4	15±1
Xiamen, China [4]	15±4	11±8	396±75
Zonguldak, Turkey [5]	23±1	20±2	245±14
Ao Phrao, Thailand [6]	11±2	6.4±0.8	174±67
Tamil Nadu, India [7]	13±4	6±1	379±40
El Ingles, Spain [8]	23±1	31±2	726±32
Penang, Malaysia [9]	31±8	36±6	369±17
UNSCEAR [3]	35	30	400

Radiological parameters such as *radium equivalent* activity (R_{aeq}) , *absorbed dose rate* (D_R) and *gamma index* (I_{γ}) were calculated (Table 2) using the following standard formulas:

$$R_{\rm aeq}({\rm Bq} \cdot {\rm kg}^{-1}) = C_{\rm U} + 1.43C_{\rm Th} + 0.0077C_{\rm K}$$

$$D_{\rm R}({\rm nGy}\cdot{\rm h}^{-1}) = 0.462C_{\rm U} + 0.604C_{\rm Th} + 0.0042C_{\rm K}$$

$$I_{\gamma} = \frac{C_{\rm U}}{150} + \frac{C_{\rm Th}}{100} + \frac{C_{\rm K}}{1500} \tag{3}$$

where, C_U , C_{Th} and C_K , (given in Bq \cdot kg⁻¹), are the activity concentrations of ²³⁸U, ²³²Th and ⁴⁰K, respectively. The safety value for this I_{γ} index is ≤ 2 [3].

Table 2. Radiological indexes.

Beach	$\mathbf{R}_{aeq} (\mathrm{Bq} \cdot \mathrm{kg}^{-1})$	$\mathbf{D}_{\mathbf{R}} (nGy \cdot h^{-1})$	\mathbf{I}_{γ}
La Coloma, Cuba	72	33	0.52
Cajio, Cuba	15	8	0.13
Rancho Luna, Cuba	10	15	0.24
Cayo Coco, Cuba	19	9	0.13
Cayo Guillermo, Cuba	10	10	0.15
Guardalavaca, Cuba	4	3	0.04
Xiamen, China [4]	34	30	0.47
Zonguldak, Turkey [5]	53	33	0.52
Ao Phrao, Thailand [6]	21	16	0.25
Tamil Nadu, India [7]	24	26	0.40
El Ingles, Spain [8]	73	60	0.95
Penang, Malaysia [9]	85	52	0.81
World average [3]	81	59	2

The calculated R_{aeq} values varied from 4 to 72 Bq \cdot kg⁻¹, showing that all studied sands show activity lower than the recommended safety limit. The dose rate varied from 3 to 33 nGy \cdot h⁻¹, all they are also lower than the worldwide average value of 59 nGy \cdot h⁻¹.

Finally, the estimated values of gamma representative level index ranged from 0.04 to 0.52, confirming that mean values are lower than the recommended safety limits. We recommend performing a similar study of beach sands from other important Cuban resorts.

REFERENCES

(1)

(2)

- O. Díaz Rizo, H. Cartas Águila, R. Gutiérrez Manso, S. Reyes Peña, G. Pérez Zayas, *Nucleus* 72, 48 (2022).
- [2] F. F. Ozmen, M. Tavuz, M. R. Tunc, I. Boztosun, *Radiat*. *Prot. Dosim.* **158**(4), 461 (2013).
- [3] United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), Sources and Effects of Ionizing Radiation. Report to General Assembly, with Scientific Annexes, United Nations, New York (2000).
- [4] H. Yingnam, L. Xinwei, D. Xiang, F. Tingting, *Mar. Pollut. Bull.* 91, 357 (2015).
- [5] H. Aytekin, M. C. Tufan, C. Küçük, J. Radioanal. Nucl. Chem. 303, 2227 (2015).
- [6] P. Kessaratikoon, N. Choosiri, R. Boonkrongcheep, U.Youngchuay, J. Phys. Conf. Ser. 1285, 012013 (2019).
- [7] V. Thangam, A. Rajalakshmi, A. Chandrasekaran, B. Arun, S. Viswanathan, B. Venkatraman, S. Bera, J. Radioanal. Nucl. Chem. 331, 1207 (2022).
- [8] J. A. Arnedo, A. Tejera, J.G. Rubiano, H. Alonso, J.M. Gil, R. Rodriguez, P. Martel, *Radiat. Prot. Dosim.* 156(1), 75 (2013).
- [9] H.K. Shuaibu, M. U. Khandaker, T. Alrefae, D. A. Bradley, *Mar. Pollut. Bull.* **119**, 423 (2017).

This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0, https://creativecommons.org/licenses/by-nc/4.0) license.

CC BY-NC