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The complete framework for the minimal deterministic automata
construction of the one-dimensional Ising model is presented. The
approach follows the known treatment of the Ising model as a Markov
random field, where the local characteristic is usually obtained from
the stochastic matrix. The problem is the inverse relation or how
to get the stochastic matrix from the local characteristics given via
the transfer matrix treatment. The obtained expressions allow for
performing complexity-entropy analysis of particular instances of
the Ising model. Two examples are discussed: the 1/2-spin nearest
neighbour and next nearest neighbours Ising model.

El marco teórico para la máquina mı́nima determinı́stica del
model de Ising en una dimensión es presentado. El tratamiento
sigue el conocido modelo de Ising tratado como un campo
aleatorio de Markov, donde las caracterı́sticas locales son obtenidas
de la matriz estocástica. El problema abordado necesita la
relación inversa, o como obtener la matriz estocástica de las
caracterı́sticas locales, dadas a través del tratamiento de la matriz
de transferencia. Las expresiones obtenidas permiten realizar el
análisis de complejidad-entropı́a para instancias particulares del
modelo de Ising. Dos ejemplos son discutidos: el spı́n-1/2 de vecinos
más cercanos y el modelo de segundos vecinos más cercanos.

Keywords: complexity (complejidad); entropy (entropı́a); Ising model (Modelo de Ising).

I. INTRODUCTION

Minimal deterministic automata, introduced by Grassberger
[1] and further developed by Crutchfield et al. [2, 3], is an
approach to discovering and characterizing patterns in an
information processing system. Building from information
theory concepts, it has found applications in several fields
and proved its value in several contexts [4–8]. For a stochastic
process considered to be stationary, the minimal deterministic
automaton is its optimal minimal description, understood as
having the best (most accurate) predictive power while using
the least possible resources (minimal forecasting complexity)
[1,9]. Causality is taken in a general temporal sense: in a given
context, cause-to-effect relations are established between past
to future events [10].

The Ising model in one-dimension is the best known in
Statistical Physics and has become a common topic in most
Statistical Mechanics books (see, for example, [11]). Despite
its intensive scrutiny in different settings, under different
Hamiltonian and interaction ranges, its analysis, in terms of
information theory, as a symbol production system is more or
less recent. In fact, until 1998, this approach was not attempted
when Feldman et al. undertook the task of casting the Ising
model under such language [12–14]. Their work allowed
the deduction of closed expressions for the entropy density,
forecasting complexity, and effective measure complexity.
However, these previous treatments did not consider the
Ising model in the general framework of a Markov (Gibbs)
random field. While the previous approaches are sufficient

when nearest-neighbour interaction is considered, the more
general framework is necessary, beyond nearest-neighbour
interaction, to determine the general probability measure of
the associated Markov process [15]. This is what it aims at in
this contribution.

Despite being a well-studied system, working through all the
mathematical details involved to solve the inverse problem,
obtain the stochastic matrix from the Markov Field, and
build the minimal deterministic automata in the most general
setting in one dimension is worthwhile. Entropic magnitudes
follow, which are usually not treated in the Ising model. In
this light, we show the use of the developed framework via
two examples.

II. THE TRANSFER MATRIX FORMALISM

The Ising (-Lenz) model is probably the most studied
lattice-type model in statistical mechanics and is well
covered in several statistical physics books for nearest 1/2
spin neighbour interactions [11]. Let us briefly recap, for
completeness and notation purposes, the basic ideas of the
transfer matrix formalism (we closely follow Dobson [16]) but
in a general setting of a local type interaction Hamiltonian,
which is usually not found in texts.

Consider a one-dimensional chain of discrete values of length
L:

sL = s0s1s2 . . . sL−1,
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where si can take values from a finite alphabetΘ of cardinality
θ(= |Θ|) (there will be θL possible sequences sL). Each si is
called a spin. The interaction between spins of the sequence
has a finite range n such that it can be written as

E(si, si±k) =
{
Λ(si, si±k) 0 < k ≤ n

0 k > n . (1)

The sL sequence can be partitioned into blocks of length n

sL = [s0s1 . . . sn−1] . . . [s(N−1)ns(N−1)n+1 . . . sNn−1],

where it has been taken L = Nn. The expression can be
relabeled as

sL = [s(0)
0 . . . s

(0)
n−1][s(1)

0 . . . s
(1)
n−1] . . . [s(N−1)

0 . . . s(N−1)
n−1 ].

= η0η1 . . . ηN−1,

with

ηi = s(i)
0 s(i)

1 . . . s
(i)
n−1. (2)

The set of all possible blocks ηi will be denoted by Υ with
cardinality υ = θn. Υ will be taken as an ordered set (e.g.,
lexicographic order) where each ηi a natural number, between
0 and υ − 1, will be assigned. In what follows, ηi should be
understood not only as the configuration (2) but also as its
corresponding order in the set Υ; context will eliminate any
ambiguity.

As the interaction has range n, one spin corresponding to the
ηi block can only interact with all the spins within ηi (type I
interaction), and at least one spin from the adjacent blocks ηi±1
(type II interaction).

Assuming the symmetry Λ(si, s j) = Λ(s j, si), the interaction
energy of type I for the ηp block, in the presence of an external
field B, will be

xηp = −B
n−1∑
i=0

s(p)
i +

n−2∑
i=0

n−1∑
k=i+1

Λ(s(p)
i , s

(p)
k ), (3)

which defines a vector ⟨X| of length υ. The contribution of type
II will be denoted by yηpηp+1 , and will be given by

yηpηp+1 =

n−1∑
i=0

i∑
k=0

Λ(s(p)
i , s

(p+1)
k ), (4)

which defines a υ × υ matrix. In general yηiη j , yη jηi

which makes Y non-symmetric. The energy of the whole
configuration SL can then be written as

Λ(sL) = xη0 + yη0η1 + xη1 + yη1η2 + . . . + yηN−2ηN−1 + xηN−1 . (5)

The vector ⟨U| and the matrix V are then introduced as

uηi = exp(−
1
2
βxηi ) (6)

vηiη j = exp[−β(
1
2

xηi + yηiη j +
1
2

xη j )]. (7)

where β ≡ (kBT)−1 is the Boltzmann product. V is known as
the transfer matrix.

The partition function follows

ZNn =

υ−1∑
η0=0

υ−1∑
η1=0

. . .
υ−1∑
ηN−1=0

exp[−βΛ(sL)]

= ⟨U|VN−1
|U⟩,

(8)

for free boundary conditions. For periodic boundary
conditions

ZNn = Tr(VN). (9)

Tr(M) denotes the trace of the matrix M.

As the trace of a matrix is invariant to similarity
transformations, from equation (9), for close boundary
conditions,

ZNn =
∑
λN

i . (10)

λi are the eigenvalues of the matrix V. If λi is degenerate,
then the term is added as many times as its multiplicity. If the
eigenvalues are labeled in non increasing order (|λi| ≥ |λ j| →

j ≥ i), then for N ≫ 1

ZNn = λ
N
0 (11)

where λ0 is the dominant eigenvalue; according to
the Perron-Frobenius theorem, it is real, positive, and
non-degenerate [15].

For open boundary conditions, again using the Perron-
Frobenius theorem for a square positive defined matrix V,
the following holds

lı́m
N−→∞

VN

λN
0

= |ra0⟩⟨la0|, (12)

where ⟨ la0| and | ra0⟩ are, respectively, the left and right
eigenvectors corresponding to the dominant eigenvalue. The
eigenvectors are normalized in the sense of ⟨ la0| ra0⟩ = 1. The
matrix | ra0⟩⟨ la0| is known as the Perron projection matrix.
Using (12) and (8) we arrive at

ZNn = ⟨U| ra0⟩⟨ la0|U⟩λN−1
0 (13)

which, in the particular case of a diagonalizable matrix,
reduces to

ZNn = u2
0⟨a0|a0⟩λ

N−1
0 (14)

and ui are the components of the vector ⟨U| in the orthogonal
base, defined by the eigenvectors ⟨ai|. It is well documented
how the thermodynamic magnitudes can be obtained from
the partition function [11].

The probability of a given spin chain will be given by

Pr(sL) = 1
ZNn

e−βΛ(sL)

= 1
ZNn

(
Uη0 Vη0η1 Vη1η2 . . .VηN−2ηN−1 UηN−1

)
=

Uη0 UηN−1

MλN−1
0

N−2∏
i=0

Vηiηi+1

(15)
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valid for free boundary conditions, and M ≡ ⟨U|ra0⟩⟨ la0|U⟩.
For periodic boundary conditions

Pr(sL) =
1
λN

0

N−2∏
i=0

Vηiηi+1 (16)

where in both cases, N ≫ 1.

III. ISING MODEL AS A MARKOV (GIBBS) RANDOM
FIELD

The Ising model is a particular case of a Gibbs random field
[15], where a Markov random field can be defined

Pr(ηi = η|sL
− ηi) = Pr(ηi = η|ηt = bt for t ∈ Ni, bt ∈ Υ). (17)

The ηi value is conditioned only in the neighbourhood and
not on the entire spin configuration.The probabilities given
by (17) are called the local characteristics associated with P.

If sL
− ηi is the configuration sL without considering the block

ηi, then the probability Pr(ηi|sL
− ηi) that the i-block has value

ηi when all the other spins (that is, excluding the ηi block) will
have the configuration sL

− ηi the product rule will given by,

Pr(ηi|sL
− ηi) =

Pr(sL)
Pr(sL − ηi)

=
Pr(sL)∑

sL∗
Pr(sL∗)

(18)

where the sum sL∗ is over all configurations identical to sL

except, possibly, for the block ηi.

Using equation (15), the probability of a configuration will be

Pr(sL) = 1
ZNn

e−βΛ(sL)

=
1

ZNn
e−βxηN−1

N−2∏
j=1

e−βxη j e−βyη jη j+1

(19)

and,

Pr(sL
− ηi) =

∑
ηk

e−βyηi−1ηk e−βxηk e−βyηkηi+1 . (20)

The local characteristics equation (18) is then

Pr(ηi|sL
− ηi) =

Vηi−1ηi Vηiηi+1∑
ηk

Vηi−1ηk Vηkηi+1
(21)

for blocks ηi not at the extremes.

For the first block

Pr0(η0|sL
− ηi) =

Uη0 Vη0η1∑
ηk

Uηk Vηkη1 (22)

A similar expression can be found for the last block.
Expression (21) has the important consequence that

Pr(ηi|sL
− ηi) = Pr(ηi|ηi−1, ηi+1) (23)

In the associated Markov process, the spin chain is considered
a sequential process where blocksη are “emitted” sequentially.

In this sense, the probability that, at a given moment, a block
ηi is the output of the Markov process is conditioned only on
the previously emitted block. In this sense, we can describe a
transition probability from one emitted block to the next and
associate a probability with it.

Consider the ηi blocks as describing the possible states of
an arbitrary block of spins, then Υ is the set of all states. A
stochastic matrix P can be defined as

Pi j = Pr(η j|ηi). (24)

which describes the transition probability from state ηi to state
η j. By definition

∑
j Pi j = 1. If ⟨p∞| is the vector of probabilities

over the blocks ηi (the probability that a given block of spins
is in a given state), then it is well known that the stationary
distribution [15] is given by

⟨p∞| = ⟨w0| (25)

where ⟨w0| is the left dominant eigenvector of the matrix P.
The vector ⟨p∞| allows to calculate Pr(ηi) when the Markov
process has been running for a sufficiently long time.

The local characteristics can be written in terms of the
stochastic matrix P using Bayes theorem

Pr(ηi|ηi−1, ηi+1) =
Pr(ηi |ηi−1)Pr(ηi+1 |ηiηi−1)

Pr(ηi+1 |ηi−1)

=
Pr(ηi |ηi−1)Pr(ηi+1 |ηi)∑

l
Pr(ηl |ηi−1)Pr(ηi+1 |ηl)

(26)

where the Markov character of the field has been used, and
the total probability theorem justifies the last step.

Equation (26) can be rewritten as

Pr(ηi|ηi−1, ηi+1)
∑
l

Pr(ηl|ηi−1)Pr(ηi+1|ηl) =

Pr(ηi|ηi−1)Pr(ηi+1|ηi)
(27)

which forms, when written for each ηi, an homogeneous
system of quadratic forms. Such a system can have a
non-trivial solution if it is undetermined, which happens if the
square of the number of unknowns is larger than the number
of equations.

There are ν = θn possible different blocks η. Pr(ηi|ηi−1, ηi+1) is
known from (21). As each local characteristic is determined
by three η’s, there will be ν3 equations. Pr(ηi|ηk) only depends
on the actual values of ηi and ηk and not on their position,
therefore there will be ν2 unknowns. The relations
ν∑
i

Pr(ηi|η j) = 1 ∀ j

must be added that eliminates ν unknowns. The total number
of unknowns is ν(ν− 1), and the total number of equations ν3.

ν3 < ν2(ν − 1)2 =⇒ ν > 3.6

As we seek solutions for integer values of ν, the effective
solution will be ν ≤ 4. Additional symmetry of the transfer
matrix (e.g. ν = 2) can lead to further reduction of the
equations, and the system could also have a non-trivial
solution for such cases.
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Returning to equation (27) and rewriting for any local
characteristic

Pr(ηi|η j, ηm)
∑
l

Pr(ηl|η j)Pr(ηm|ηl) =

Pr(ηi|η j)Pr(ηm|ηi),
(28)

introducing

Yl( j,m) = Pr(ηl|η j)Pr(ηm|ηl) (29)

equation (28) can be written as

Pr(ηi|η j, ηm)
∑

l

Yl( j,m) = Yi( j,m). (30)

The normalization condition ( which can be derived from
equation (26)) over the local characteristics determines

ν∑
k

Pr(ηk|η j, ηm) = 1, (31)

Equation (30) is linear and homogeneous over the Yi( j,m)
which, upon solving for the non-trivial-case, leads to a system
of simple homogeneous quadratic equations (29) which can
be readily solved.

IV. ISING MODEL AS A MINIMAL DETERMINISTIC
AUTOMATA

The Markov character of the system means that for the
associated Markov process, the generation process can forget
all the past except the last block η−1 (the last n spins) to
determine, as certain as possible, the future. In other words, if
the local characteristics imply a stochastic matrix as equation
(28) implies, then all past configurations ←−s L with the same
last block η−1 condition (statistically) the same future, this fact
allows considering the Ising chain as a canonical finite state
machine or minimal deterministic automata.

If two blocks η−1 and η′
−1 give the same Pr(−→s L

|
←−s L), for all

possible futures −→s L, then η−1 y η′
−1 are said to belong to the

same causal state (Cp) and we write

η−1 ∼ η
′

−1,

where η−1, η′−1 ∈ Cp [10]. Two blocks of the same causal state
Cp define identical rows in the stochastic matrix.

The partition of the set Υ in classes of causal states is an
equivalence relation.The set of causal states, denoted by C,
uniquely determines the future of a sequence.

The probability of a causal state is directly deducible from
equation (25),

Pr(Cp) =
∑
η j∈Cp

Pr(η j) =
∑
η j∈Cp

p∞η j
(32)

As each causal state represents the set of past that determines
(probabilistically) the same future, the set of causal states
represents the memory the system has to keep to predict the
future.

The forecasting complexity [1], also known as statistical
complexity, has been defined as the Shannon entropy H over
the causal states [9]1

Cµ ≡ −
∑

Cp∈C

Pr(Cp) log Pr(Cp)

= H[C].

(33)

The logarithm is usually taken in base two, and the units are
then bit. Forecasting complexity measures how much memory
(resources) the system needs to predict the future optimally.
If the system has |C| causal states, then the forecasting
complexity has the upper bound

Cµ ≤ log |C|,

corresponding to a uniform distribution of probabilities. The
upper bound of the forecasting complexity is also known as
topological entropy.

The probability of occurrence of block ηi conditional on the
causal state C will be given by

Pr(ηi|C) =
∑
ηk

Pr(ηi|ηk ∩ C)Pr(ηk|C)

= Pr(ηi|η j; η j ∈ C)
∑
ηk∈C

Pr(ηk|C)

= Pr(ηi|η j; η j ∈ C)

(34)

in the first step, the total probability theorem was used. In the
second step, use has been made of the fact that conditioning
in ηk ∩ C is equal to conditioning in η j if the block belongs to
the causal state C and, finally

∑
ηk∈C

Pr(ηk|C) = 1.

On the other hand

Pr(η j) =
∑
ηk

Pr(η j|ηk)Pr(ηk)

=
∑

Ck∈C

∑
ηk∈Ck

Pr(η j|ηk)Pr(ηk)

=
∑

Ck∈C

Pr(η j|ηk′ , ηk′ ∈ Ck)Pr(Ck)

making use of equation (34) to get

Pr(η j) =
∑
Ck∈C

Pr(η j|Ck)Pr(Ck). (35)

which allows us to compute the occurrence of a block from
the probabilities over the causal states.

1We prefer to say that it is defined in such a way, rather than state that it follows from its original definition because as pointed out by Grassberger [17],
there is no proof that the minimal graph corresponds to the minimal forecasting complexity. However, in the kind of model we are studying, this seems to
be the case in general.
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The probability of a transition from one causal state to another
will be given by

Pr(Ck → Cp) ≡ Pr(Cp|Ck) =
∑
η j∈Cp

Pr(η j|Ck) (36)

We define the transition matrix T(η), whose elements are the
probability of going from state Ck to state Cp upon emitting a
block η:

T(η)
rq = Pr(Cr

η
→ Cq). (37)

By construction, the emission of a block η determines the
causal state uniquely to where the transition occurs (this is
called the unifiliar property [10]). In this sense, the generation
process is deterministic. Correspondingly, the connectivity
matrix T is defined as

Trq =
∑
η∈Σ

T(η)
rq = Pr(Cr → Cq) (38)

which connects causal states without regard to the emitted
block.

To account for the irreducible randomness, the entropy
density is defined as [18]

h = lı́mL→∞H[η0|η−Lη−L+1 . . . η−1]

= lı́mL→∞H[η0|
←−s L]

(39)

h is the uncertainty on the next emitted block η0 conditional
on having seen infinite previous blocks (spins). By definition,
h ≥ 0.

H[η0|
←−s L] = −

∑
η0

∑
η−n

. . .
∑
η−1

Pr(←−s Lη0) log Pr(η0|
←−s L)

= −
∑
η0

∑
η−N

. . .
∑
η−1

Pr(η0|
←−s L)Pr(←−s L) log Pr(η0|

←−s L)
(40)

where ←−s L = η−Nη−N+1 . . . η−1, , on the other hand, using
←−s L−n = η−N . . . η−2

Pr(sL) = Pr(sL−n
|η−1)Pr(η−1). (41)

use has been made of Bayes theorem. Substituting equation
(41) on equation (40) and reordering terms

H[η0|
←−s L] = −

∑
η0

[∑
η−1

Pr(η0|η−1)Pr(η−1) log Pr(η0|η−1)

{∑
η−N

. . .
∑
η−2

Pr(←−s L−n
|η−1)
}]
.

(42)

∑
η−N

. . .
∑
η−2

Pr(←−s L−n
|η−1)

is the probability that from η−1 any configuration is
conditioned and this probability is 1. Equation (42) then
reduces to

h = lı́m
L→∞

H[η0|
←−s L] = H[η0|η−1]

= −
∑

Cα∈C
Pr(Cα)

∑
ηk∈Σ

Pr(ηk|Cα) log Pr(ηk|Cα)
(43)

The mutual information between past and future is called
the effective measure complexity [1], also known as excess
entropy [18]

E ≡ I[←−s : −→s ], (44)

where I[X : Y] is the mutual information between X and Y.
From the finite range character of the interaction in the Ising
model

E = I[←−s : −→s ] = I[η−1 : η0]

= H[η−1] −H[η0|η−1]
(45)

where

H[ηi] =
∑
ηi∈Σ

Pr(ηi) log Pr(ηi), (46)

and

H[η0|η−1] = H[η0|
←−s L] = h

given by equation (43).

From equation (33) and (43) we arrive to the expression

E = Cµ − h. (47)

The effective measure complexity measures the resources
the system needs to optimally predict the future once the
irreducible randomness has been subtracted [18]. As E is
mutual information, it will always be a non-negative value,
which implies

Cµ ≥ h

If the system is perfectly periodic, then h = 0 and

Cµ = E.
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V. EXAMPLES

V.1. 1/2 nearest neighbors spin chain

B

(b)

J

(a)

(c)

Figure 1. 1/2 nearest neighbors spin chain. (a) The entropy density as a
function of the applied field B for ferromagnetic (J > 0), antiferromagnetic
(J < 0), and paramagnetic (J = 0) interaction. The Boltzmann factor in all
cases is taken as β = 1. (b) The entropy density h map as a function of
the system control parameter J and the applied field B. Black corresponds to
h = 0, and full orange to h = 1. Maximum disorder values happen along the
line with no applied field B = 0, with the paramagnetic state’s maximum at
J = 0. Boltzmann factor as in (a). (c) The diagram shows the phase diagram
for zero absolute temperature as a function of the parameters J and B. Two
phases can be identified: ferro- and antiferromagnetic.

The 1/2 nearest neighbour spin chain is defined by the

interaction Hamiltonian [20]

E = −B
∑

i

si − J
∑

j

s js j+1, (48)

where B is the external field, and J is the interaction parameter.
The η blocks set will be

η = ↓, ↑.

The local characteristics derived from equation (21) reduce to

Pr(↓ | ↓, ↓) = e4βJ

e2βB+e4βJ

Pr(↓ | ↓, ↑) = 1
e2βB+1

Pr(↑ | ↓, ↓) = 1
e4βJ−2βB+1

Pr(↑ | ↓, ↑) = e2βB

e2βB+1

Pr(↓ | ↑, ↓) = 1
e2βB+1

Pr(↓ | ↑, ↑) = 1
e2β(B+2J)+1

Pr(↑ | ↑, ↓) = e2βB

e2βB+1

Pr(↑ | ↑, ↑) = e2β(B+2J)

e2β(B+2J)+1 .

(49)

Solving the linear system of equation (30), results in the system
of quadratic equations

Pr(↓ | ↑)Pr(↑ | ↓) = e2βB−4βJPr(↓ | ↓)

Pr(↑ | ↑) = e2BβP(↓ | ↓),
(50)

together with the normalization conditions

Pr(↓ | ↑) + Pr(↑ | ↑) = 1

Pr(↓ | ↓) + Pr(↑ | ↓) = 1
(51)

lead to the solution for2

Pr(↓ | ↓) =
2e2βJ

√

4e2βB + e4β(B+J) − 2e2β(B+2J) + e4βJ + e2β(B+J) + e2βJ
.

(52)

The other entries of the stochastic matrix follow.
2This result is equivalent to the one reported as equation (7.31) in [12], but, if one calculates all matrix entries from equation (7.15), the row normalization

condition is violated. Therefore, the correctness of the entries in (7.31) in [12] is accidental due to forcing row normalization.
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(b)

(a)

Figure 2. 1/2 nearest neighbors spin chain. (a) The dependence of the
magnetization M with the disorder measured by the entropy density B. 105

points were used with random parameters in the range β ∈ [10−4, 102],
J ∈ [−1.5, 0] and B ∈ [−3, 3]. The green points correspond to β = 10, while the
rust colors are for β = 0.2, as labeled in the figure. The rust color degradation
grows lighter the larger the M value and is used as a visual aid. For all points,
the spin coupling is antiferromagnetic. (b) The complexity-entropy diagram for
the 1/2-nearest neighbor Ising model. Simulation conditions follow the same
parameter range as in (a). The rust color degradation grows lighter the larger
the M value and is used as a visual aid.

The behavior of the entropy density h with the applied field
for the three signs of the interaction term is shown in Figure
1a for β = 1. The results are consistent with the usual graphic
of the Boltzmann entropy for this model. The applied field
B generally lowers the system’s entropy as it tends to align
the spins along the field. In the case of the antiferromagnetic
coupling, with an increasing value of B, first entropy increases
due to random spins, initially contrary to the external field
flips, leading to increasing disorder. For the larger field, B,
the order starts prevailing as further production of aligned
spins overcomes the initial disordering process. For B = 0, the
system starts with an initial amount of randomness (h > 0) for
all signs of J as temperature introduces disorder.

In Figure 1(b), the amount of disorder as a function of the
applied field B and interaction parameter J. The maximum
value of h, for a given value J, is attained at the line B = 0
and is the result of β > 0. The absolute maximum value of h
is taken for B = 0 and J = 0. Increasing the applied field and
interaction parameter decreases the spin system’s disorder.
Compare the entropy map with the phase diagram of the

spin system at zero temperature (1(c)). The map of effective
measure complexity for β→∞ reproduces the phase diagram
(not shown). However, for β < ∞, the entropy density map
merely indicates the mapping of randomness regardless of the
underlying pattern, whether ferro- or antiferromagnetic.

The behavior of the magnetization with the disorder as
measured through h can be seen in figure 2a. From
the stochastic matrix, the two-state minimal deterministic
automata were built. The plot was calculated for 105 points,
randomly taking the parameters’ value but keeping J < 0.
First, we notice that three magnetization values are possible
at zero disorder h = 0, two at the extremes, corresponding
to the spin alignment forced by a sufficiently strong applied
field B, and a zero magnetization at B = 0. At lower
temperatures (β = 10), for a given disorder value of h, the
amount of magnetization that can be accommodated around
the vanishing magnetization has fewer values than for larger
temperatures β = 0.2. Also, increasing temperature makes
more disorder available for the system, which is seen for the
larger possible values of h.

Finally, (h,E) was calculated using the same procedure for the
magnetization plot and is shown as a complexity map in figure
2b. This type of complexity map has been discussed before
[18]. Small values of the disorder can accommodate a large
range of effective measure complexity values, which means
varying probability between the two possible causal states. As
disorder increases, the system loses structure, tending towards
a single-state process that, although increasingly random, is
also increasingly less complex.

V.2. 1/2 next nearest neighbors spin chain

If a second coordination is added, the 1/2 next nearest
neighbors spin chain, the interaction Hamiltonian [20] now
is given by

E = −B
∑

i

si − J1

∑
j

s js j+1 − J2

∑
k

sksk+2. (53)

where B is the external field, and J1, J2 are spin coupling
parameters. The η blocks set will be

η = ↓↓, ↓↑, ↑↓, ↑↑,

again, the value 1 corresponds to spin up, whereas −1
corresponds to spin down.

Figure 3 above shows the effective measure complexity as a
function of J1 and J2 for the ground state (β → ∞) at zero
field (B = 0). While in the nearest neighbor case, only the
ferromagnetic and antiferromagnetic case was found in the
phase diagram, here, besides those two, a third ordered phase
comes into existence, with a periodicity of 4, which can be
regarded as a higher coordination anti-ferromagnetic phase.
↑↑↓↓. This phase results from the larger range of interaction
between the spins and competing interactions. For J2 ≥ 0,
the second range interaction, governed by J2, favors the
ferromagnetic phase, and its balance with the strength and
sign of J1 determines the ferromagnetic or antiferromagnetic
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ordering similar to the nearest neighbor coupling. When
J2 becomes negative, it strengthens an antiferromagnetic
coupling between second range spin now depending on the
sign of J1, this ordering competes with the first range coupling
in two different ways, which will always be at odds with J2.
For certain values of J1 and J2, the solution to this balance is
the period 4 antiferromagnetic ordering.

When the applied field is different from zero, as shown in
the Effective Complexity Measure plot 3 below, as a function
of J1/B and J2/B, four orderings of periodicity 1, 2, 3, and 4,
identified as the ordered sequences:

(1) ↑↑↑↑↑↑↑↑ · · ·

(2) ↑↓↑↓↑↓↑↓ · · ·

(3) ↑↑↓↑↑↓↑↑ · · ·

(4) ↑↑↓↓↑↑↓↓ · · ·

1
1

1

1
1

1

1.2

1.4

1.6

1.8

1.0

0

1.2

1.4

1.6

1.8

1.0

0

Figure 3. 1/2 next nearest neighbors spin chain. Effective measure complexity
(E) at the ground state (β → ∞) for zero field (B = 0) and non-zero field
(B , 0). Four possible orderings are found ↑↑↑↑↑↑↑↑ · · · , ↑↓↑↓↑↓↑↓ · · · ,
↑↑↓↑↑↓↑↑ · · · and ↑↑↓↓↑↑↓↓ · · · . The third configuration is only possible at
B , 0.

This has been reported before [20]. The new phase ↑↑↓↑↑↓↑↑
· · · appears as a wedge in the phase diagram when B is
zero, and it is the result of the new competing factor when

the applied field favors one sense in space. The applied
field has an effect equivalent to a dipolar average field
pointing, in this case, in the up direction, therefore implying a
flip of a spin to the upper direction that would otherwise
have an antiferromagnetic coupling. This phase, therefore,
appears between the simple antiferromagnetic phase and the
periodicity 4 antiferromagnetic phase.

VI. CONCLUSION

In this article, we aimed to develop the mathematical
treatment of minimal deterministic automata to fully model
one-dimensional Ising models, going beyond previous
approaches. The deduced expressions can be used to
model specific instances of the interaction Hamiltonian.
Furthermore, the detailed deduction can be a route map to
similar deductions for other common statistical mechanics
models, such as Pott or Heisenberg.
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