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c) CEPHCIS-CEIICH, Universidad Nacional Autónoma de México
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S-shaped or sigmoid curves can be defined as the solutions
of autonomous first-order differential equations that satisfy four
conditions. Without solving the equations, we demonstrate that
the solutions of the logistic family and the Smith-Birch model
satisfy these conditions. We introduce two generalizations of the
Smith-Birch, whose solutions are identified as S-shaped for some
range of variation of the parameters. The new models introduced
here predict the spread of the disease better than traditional logistic
family models for time series of the cumulative number of cases for
the first 61 days of the COVID-19 pandemic in some countries.

Las curvas en forma de S o curvas sigmoidales pueden definirse
como soluciones de ecuaciones diferenciales autónomas de primer
orden que cumplen con cuatro condiciones, a través de las cuales
se demuestra sin necesidad de resolverlos que los modelos de la
familia logı́stica generalizada y el de Smith-Birch tienen soluciones
sigmoidales. Se introducen dos generalizaciones del modelo de
Smith-Birch, cuyas soluciones son curvas sigmoidales para cierto
rango de variación de los parámetros. Se encontraron series
temporales del número cumulativo de casos para los 61 primeros
dı́as de la pandemia de COVID-19 en algunos paı́ses donde los
nuevos modelos aquı́ introducidos predicen mejor la propagación de
la enfermedad que los modelos tradicionales de la familia logı́stica.

Keywords: Complex systems modelling (Modelado de sistemas complejos); Sigmoid curves (Curvas sigmoideas); Growth models (Modelos
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I. INTRODUCTION

S-shaped, or sigmoid curves (SC) can be found frequently
in sciences, including physics and complex systems. Their
ubiquity arises from their ability to approximate step-like
behaviors in a continuous and differentiable manner. The
S-shape is a consequence of competition between positive
feedback, which tends to produce exponential growth, and
negative feedback, which produces saturation or stabilization
due to limiting factors. Some paradigmatic examples of SC are
the Fermi-Dirac distribution function and the magnetization
in a system of two-state (spin 1/2) particles.

SC are observed in a wide variety of phenomena and have a
large number of applications. For example, in computational
sciences [1], neuro and behavioral sciences [2–6], molecular
biology [7], chemistry [8, 9], agricultural, livestock and
veterinary sciences [10–14], pedology [15], ecology [16–18],
economics and marketing [19, 20], electronics [21], materials
engineering [22–24], spectroscopy [25] and autonomous
driving [26]. An exhaustive review of more applications can
be found in [27].

Applications of SC in epidemiology deserve a special mention.
The cumulative number of cases in the early stages of
epidemics frequently exhibits a sigmoid growth behavior.
See, for example [28–44]. Sigmoid curves can be described

as solutions of first-order differential equations of the form:

dN
dt
= gΠ(N) (1)

where the function gΠ(N) with parameter vector Π =
{Π1,Π2, · · ·Πk}must satisfy the conditions [45]:

I. gΠ(N) is C1 over the interval [ f , c], with 0 ≤ f < c.

II. gΠ( f ) = gΠ(c) = 0.

III. gΠ(N) > 0 if N ∈ ( f , c).

IV. sgn(g′
Π

(N)) =
{

1 if N ∈ [ f ,N∗)
−1 if N ∈ (N∗, c]

where N∗ ∈ ( f , c).

Condition I guarantees that for each point Π∗ ∈ Rk, there
exists a unique integral curve N = N(t,Π∗) (i.e., the graph of
a non-prolongable solution) of equation (1) passing through
each point (t0,N0) of an open set contained in the stripR×( f , c)
(Section 4.4, Chapter 4, [46]). Property III ensures that the
solution N = N(t,Π∗) is an increasing function, while property
IV implies the existence of a unique inflection point (t∗,N∗) of
the solution curve that marks accelerated growth between f
and N∗, and decelerated or retarded growth between N∗ and
c. Condition II ensures that the stationary solutions defined
by the equilibrium positions f and c determine the lower and
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upper limits, respectively, of the dynamics of interest. In this
way, conditions (I-IV) guarantee the existence of S-shaped
solutions. Furthermore, under conditions (I-IV), equation (1)
only has equilibrium positions at the endpoints of the interval,
and these points cannot collapse, which means that the
parameters with the positiveness conditions considered in III
and IV do not bifurcate.

Equation (1) is separable, so it is solvable at least for t as a
function of N:

t − t0 =

N∫
N0

dN
gΠ(N)

(2)

where N(t0) = N0 is the initial condition. In some particular
cases it is possible to obtain N as an explicit function of t.

Different analytic and numerical methods have been used to
study SC [47–51].

II. THE LOGISTIC FAMILY

The simplest sigmoid growth model is the logistic model,
also known as the Verhulst model [52], a two-parameter,
second-order approximation of (1)

dN
dt
= rN

(
1 −

N
K

)
(3)

Logistic model satisfies SC conditions (I-IV) for f = 0 and
c = K. It exhibits an initial exponential growth with relative
growth rate r and a saturation value or carrying capacity
(horizontal asymptote) at N = K. The inflection point is
N∗ = K

2 , which is fixed for a given value of K only. This is
the main limitation of this model: more flexibility is needed
for the inflection point in order to fit different datasets. In order
to do that, several generalizations have been proposed as well
as for flexibilizing other features of the SC [13, 53–56]. This
generalization is achieved by including more parameters. In
[53] a generalized five-parameter logistic model is proposed:

dN
dt
= rNα

(
1 −

(N
K

)β)γ
(4)

whereα, β and γ are positive real numbers. In what follows we
shall call model (4) the Tsoularis generalized logistic model.
Conditions (I-IV) are satisfied for these parameter values
with f = 0, c = K and N∗ = K(γ/(γ + αβ))1/α, so the model
has SC solutions. Parameter α allows non exponential initial
growth, while β and γ, along with α, change the position of the
inflection point. In general, α, β and γ are intended to smooth
the equation (4) vector field.

Some well-known, particular cases of (4) are shown in the next
table.

Model α β γ
Logistic 1 1 1
Generalized Logistic α 1 1
Richards 1 β 1
Generalized Richards α β 1
Gompertz 1 → 0 1
Generalized Gompertz α → 0 1

III. THE SMITH-BIRCH MODEL

A different, lesser-known kind of generalization for the
logistic model was introduced by Smith [57] in order to
correct problems associated with time lags in a food-limited
population. Birch [58] arrived to the same result by
introducing an alternative modification in the logistic model,
trying to overcome some numerical unstabilities appearing in
the Richards model when fitting experimental data:

dN
dt
=

rN(K −N)
AN + K

(5)

This three-parameter model reduces to the logistic model
when A = 0 (furthermore, the case A = −1 corresponds to the
exponential growth). When A > 0 Smith-Birch model satisfies
conditions (I-IV) with f = 0, c = K and N∗ = K(

√
A + 1 − 1)/A,

so it produces SC. In this way, A changes the position of the
inflection point. In Figure 1 some solutions for this model are
shown.
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Figure 1. Smith-Birch model curves with K = 10, N(0.01) = 0.1 and A = 0
(orange), A = 0.1 (green), A = 0.5 (purple), A = 1 (red), A = 2.5 (blue).
Inflection points correspond to N∗ = 5, 4.88, 4.49, 4.14, 3.48, respectively.

IV. NEW SIGMOIDAL CURVES

In a previous work, partially published in [44], we applied
several models of the logistic family to the time series for the
cumulative number of cases during the first 61 days of the
COVID 19 pandemic for 131 countries. We have found that
some countries’ data were not properly fitted with none of
the models considered, so it is interesting to study some new,
four-parameter generalizations of the Smith-Birch model:
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dN
dt
=

rN(K −N)
ANp + K

(6)

dN
dt
=

rNp(K −N)
AN + K

(7)

which we will call Smith-Birch A and Smith-Birch B models,
respectively. Both of these new models reduce to Smith-Birch
when p = 1.

They satisfy conditions (I-III) for A > 0 with f = 0 and c = K.
Condition IV requires a numerical analysis. Furthermore, it
does not seem possible to find analytic expressions for the
inflection point N∗. Hopefully, all these models, including
(4), are analytically solvable for t as a function of N, using
hypergeometric functions. See Appendix I for details. In
Figures 2 and 3 some solutions for Smith-Birch A and
Smith-Birch B models are shown.
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Figure 2. Smith-Birch A model curves with K = 10, N(0.01) = 0.1, A = 1 and
p = 0.5 (orange), p = 1 (green), p = 1.5 (purple), p = 2.5 (red). Inflection points
(numerically calculated) correspond to N∗ = 4.77, 4.14, 3.16, 1.82, respectively.
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Figure 3. Smith-Birch B model curves with K = 10, N(0.01) = 0.1, A = 0.5
and p = 0.5 (orange), p = 1.1 (green), p = 1.5 (purple). Inflection points
(numerically calculated) correspond to N∗ = 3.11, 5.86, 7.11, respectively.

V. APPLICATIONS

As already mentioned, the traditional SC models listed in
the table above do not fit appropriately the time series for
the cumulative number of cases during the first 61 days
of the COVID 19 pandemic for some countries. In these
cases, Birch-Smith, Birch-Smith A or Birch-Smith B are good
alternatives to resolve the problem.

The data for the adjusted curves is generated using the
function NonlinearModelFit from the software Wolfram
Mathematica to obtain the optimal values of the parameters.
See Appendix II for the detailed methodology and Appendix
III for some countries’ optimal parameters.

In Figure 4 the results for Kiribati using several sigmoid
curves are shown. In this case, the best results correspond
to Birch-Smith model.
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Figure 4. Results for Kiribati using several sigmoid models: Smith-Birch
(orange), logistic (red), generalized logistic (blue), Richards (brown) and
Gompertz (magenta). The averaged real data is shown in black dots.

In figure 5 the results for Smith-Birch model are shown
separately. After the 35-day training period this model
produces a good prediction for more than 10 days.
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Figure 5. Smith-Birch (orange) results for Kiribati. The averaged real data is
shown in black dots.

In figure 6 the results for Palau using several sigmoid models
are shown. The best results correspond to Birch-Smith A
model. In figure 7 the results for Smith-Birch and Smith-Birch
A models are shown separately. Both models fit well during
the 35-day training period, but afterwards Smith-Birch A
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produces a better prediction for more than 10 days. Similar
results are obtained for Somalia (figures 8 and 9).
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Figure 6. Results for Palau using several sigmoid models: Smith-Birch
(orange), Smith-Birch A (green), logistic (red), generalized logistic (blue),
Richards (brown) and Gompertz (magenta). The averaged real data is shown
in black dots.
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Figure 7. Smith-Birch (orange) and Smith-Birch A (green) results for Palau.
The averaged real data is shown in black dots.
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Figure 8. Results for Somalia using several sigmoid models: Smith-Birch
(orange), Smith-Birch A (green), logistic (red), generalized logistic (blue),
Richards (brown) and Gompertz (magenta). The averaged real data is shown
in black dots.
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Figure 9. Smith-Birch (orange) and Smith-Birch A (green) results for Somalia.
The averaged real data is shown in black dots.

Mauritius is an interesting example. As shown in Figure 10,
the carrying capacity was reached in a short time. Smith-Birch
A produces good results, although generalized Richards is the
best model in this case. Smith-Birch, on the contrary, is a bad
choice. In Figure 11 this curves are shown separately.
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Figure 10. Results for Mauritius using several sigmoid models: Smith-Birch
(orange), Smith-Birch A (green), logistic (red), generalized logistic (blue),
Richards (brown), generalized Richards (yellow) and Gompertz (magenta).
The averaged real data is shown in black dots.
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Figure 11. Smith-Birch (orange) and Smith-Birch A (green) results for
Mauritius. The averaged real data is shown in black dots.

In [44] it was proven by an statistical analysis that for Cuba
data the best model is generalized Gompertz. However, it
is interesting to evaluate the performance of Smith-Birch
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models in this case. Figures 12 and 13 show good results for
Smith-Birch A model, although Smith-Birch and Smith-Birch
B results are not satisfactory.

real data (averaged)

Smith-Birch

Smith-Birch A

Smith-Birch B

logistic

generalized logistic

Richards

generalized Richards

Gompertz

generalized Gompertz

10 20 30 40 50 60
Days

500

1000

1500

2000

2500
Cumulative number of cases

Cuba

Figure 12. Results for Cuba using several sigmoid models: Smith-Birch
(orange), Smith-Birch A (green), Smith-Birch B (purple), logistic (red),
generalized logistic (blue), Richards (brown), generalized Richards (yellow),
Gompertz (magenta) and generalized Gompertz (cyan). The averaged real
data is shown in black dots.
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Figure 13. Smith-Birch (orange), Smith-Birch A (green) and Smith-Birch B
(purple) results for Cuba. The averaged real data is shown in black dots.

The results for Cambodia using several sigmoid models are
shown in Figure 14. In this case, the best model is Smith-Birch
B. In Figure 15 it is shown separately, along with Smith-Birch
(for comparison).
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Figure 14. Results for Cambodia using several sigmoid models: Smith-Birch
(orange), Smith-Birch B (purple), logistic (red), generalized logistic (blue),
Richards (brown), generalized Richards (yellow), Gompertz (magenta) and
generalized Gompertz (cyan). The averaged real data is shown in black dots.

real data (averaged)

Smith-Birch

Smith-Birch B

10 20 30 40 50 60
Days

1000

2000

3000

4000

5000

Cumulative number of cases

Cambodia

Figure 15. Smith-Birch (orange) and Smith-Birch B (purple) results for
Cambodia. The averaged real data is shown in black dots.

VI. CONCLUSIONS

Two new, four-parameter sigmoid curves are introduced,
as generalizations of the Smith-Birch model, a member of
the logistic family. Analytic and numerical description of
these two models are presented. The applicability of the new
models for predicting early dynamics of infectious diseases is
shown in the case of epidemiologic data from the COVID-19
pandemic in countries where traditional models failed to
predict. Due to the wide variety of phenomena which can be
described using sigmoid curves, further applications in other
areas can be expected, for example, prediction curves of any
kind as envelopes of sigmoid curves.
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VIII. APPENDIX I: ANALYTIC SOLUTIONS FOR
THE TSOULARIS GENERALIZED LOGISTIC,
SMITH-BIRCH, SMITH-BIRCH A AND SMITH-BIRCH
B MODELS

The Tsoularis generalized logistic model (4) with the initial
condition N(t0) = N0 has the solution

r(t − t0) =



1
βγ

(
1−( N

K )−β

1−( N
K )β

)γ
F(γ, γ, γ + 1,

(
N
K

)−β
)
∣∣∣∣∣N
N0

if α = 1

N1−α

α−1 F( 1−α
β , γ, 1 +

1−α
β ,

(
N
K

)β
)
∣∣∣∣∣N
N0

if α , 1

(8)
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where

F(a, b, c, z) =
Γ(c)
Γ(a)Γ(b)

∞∑
n=0

Γ(a + n)Γ(b + n)
Γ(c + n)

zn

n!
(9)

is the hypergeometric function [59].

The Smith-Birch A model (6) with the initial condition N(t0) =
N0 has the solution

r(t − t0) =
(

A
Kp

NpF(1, p, 1 + p,
N
K

) + ln
( N

K −N

)) ∣∣∣∣∣N
N0

(10)

The Smith-Birch B model (7) with the initial condition N(t0) =
N0 has the solution

r(t − t0) =

=



ln
(

N
(K−N)A+1

) ∣∣∣∣∣N
N0

if p = 1(
A+1

K ln
(

N
K−N

)
−

1
N

) ∣∣∣∣∣N
N0

if p = 2(
A

K(2−p) N
2−pF(1, 2 − p, 3 − p, N

K )+

+ 1
1−p N1−pF(1, 1 − p, 2 − p, N

K )
) ∣∣∣∣∣N

N0

if p , 1, 2

(11)

It should be noted that the solution of the Smith-Birch model
(5) is included in (10) and (11) when p = 1.

IX. APPENDIX II: METODOLOGY FOR TIME SERIES
ANALYSIS

As the number of cases is typically reported at regular
time intervals (daily, weekly, etc.), it is reasonable to use
mathematical models whose solutions are defined over time
discrete domains, so we will use discrete difference equations,
instead of first-order differential equations on a continuous
time domain, for describing the dynamics of the disease.
A classical review on the theoretical and applied scope of
first-order difference equations can be found in [60]. A didactic
introduction to the study of these equations appears, for
instance, in [61].

The standard way of obtaining a difference equation from a
continuous one is through the transformation:

N(t)→ Ni,
dN
dt
→

Ni+1 −Ni

h
, (12)

where i represents the i-th value of the time series of n0 length
{Ni}

n0
i=1 and h is the time step between recorded values (we are

assuming that it is constant). The next steps are

1. The time series
{
N0

i

}n0

i=1
is averaged with a 7 day long

moving window, resulting in the time series {Ni}
n
i=1,

where n = n0 − 6. This smoothing has the effect of
eliminating factors like delays in reporting due to the
accumulation of unreported cases. This kind of window
averaging has been used before in COVID-19 literature
[62].

2. From the time series {Ni}
n
i=1 the first n1 elements are used

to train each model (calibration period) and form the list
of pairs {(Ni,Ni+1)}n1−1

i=1 .

3. The list of pairs is fitted to the model Y = X + hgΠ(X, i),
by using the function NonlinearModelFit from the
software Wolfram Mathematica. From here we obtain
the optimal values of the parameters and store them as
components of the optimal parameters vector Π⋆.

4. The predicted time series
{
N⋆i

}n

i=1
is computed through

the RecurrenceTable function using the optimal values
Π⋆ and N⋆1 = N1.

X. APPENDIX III: OPTIMAL VALUES FOR THE
PARAMETERS FOR SOME COUNTRIES.

Palau:

Model r K A p
Smith-Birch 0.33 3082.82 1.43 −

Smith-Birch A 0.29 1.65 · 106 6.07 1.80

Cambodia:

Model r K A p
Smith-Birch 1.67 13399.3 599.63 −

Smith-Birch B 8.82 1.37 · 1015 1.81 · 1011 0.23
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