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The development of mathematical models to simulate biological
processes is essential for understanding the complexity of living
systems, allowing for predictions and virtual experiments that
would be difficult to carry out under real conditions. In this work,
we present a mathematical model to simulate the process of
apoptosis or programmed cell death, using the Gillespie algorithm.
Additionally, an optimization of this model is proposed, which
reduces computation time and enables the model to simulate
apoptosis in the cells of a tumor under topical treatment. Results
are also presented demonstrating that both models are equivalent.
The optimization reduced the execution time of the simulation by two
days.

El desarrollo de modelos matemáticos para simular procesos
biológicos es fundamental para comprender la complejidad de
los sistemas vivos, permitiendo hacer predicciones y realizar
experimentos virtuales que serı́an difı́ciles de llevar a cabo en
condiciones reales. En el presente trabajo presentamos un modelo
matemático para simular el proceso de apoptosis o muerte
programada en una célula, utilizando el algoritmo de Gillespie. Se
propone además, una optimización de este modelo, que permite
disminuir el tiempo de cálculo y utilizar el modelo para simular la
apoptosis en las células de un tejido tumoral que fue sometido
a un tratamiento tópico. Se presentan además resultados que
demuestran que ambos modelos son equivalentes. La optimización
permitió disminuir el tiempo de ejecución de la simulación en dos
dı́as.

Keywords: Stochastic models (modelos estocásticos); Complex systems (sistemas complejos); Computer modeling (modelado
computacional); Monte Carlo methods (métodos de Monte Carlo); Systems biology (biologı́a de sistemas).

I. INTRODUCTION

Apoptosis, or programmed cell death, is a vital biological
process that facilitates the controlled elimination of
unnecessary or damaged cells. This mechanism plays a crucial
role in maintaining a stable internal environment, even in the
face of external changes, and ensures the proper functioning
of the tissues. Dysregulation of apoptosis is associated with
various diseases, particularly neurodegenerative disorders
and cancer. In cancer, malignant cells often develop the ability
to evade apoptosis, allowing them to survive and proliferate
uncontrollably. Understanding the complex mechanisms that
govern apoptosis and its disruptions is essential to develop
targeted therapies. These therapies aim to reactivate apoptotic
pathways, promoting the selective death of cancer cells while
minimizing damage to normal tissues, ultimately enhancing
the efficacy of treatment and improving patient outcomes
[1–7].

Given the high costs associated with developing less
invasive and more effective treatments, mathematical
modeling of apoptosis presents a promising tool to increase
our understanding of this cellular process. Specifically,
computational algorithms that efficiently simulate all
biochemical interactions within cells can provide valuable
insights into the behavior of cancer and other diseases.
Using these models, researchers can better predict outcomes
and tailor therapies to individual patient needs. Various

mathematical models used to simulate apoptosis are based
on different approaches, including agent-based models [8–10],
Boolean networks [11,12] , differential equations [14–16], and
stochastic methods grounded in Monte Carlo simulations
using their own algorithms or the Gillespie algorithm [17–19].

In the study of physical systems where randomness
is fundamental, traditional deterministic methods often
prove insufficient. In these cases, the Gillespie algorithm,
originally developed to model stochastic chemical reactions,
becomes highly relevant in physics. This algorithm enables
accurate simulation of discrete, random processes over
time, including phenomena such as particle diffusion [20]
, molecular population dynamics [21], and the evolution
of non-equilibrium systems. Its versatility makes it a
powerful tool in fields like statistical physics, biophysics, and
materials science, especially when microscopic fluctuations
have significant macroscopic consequences.

In this work, we present a mathematical model of cell
death by apoptosis that incorporates the internal dynamics of
biochemical species within the cell. In addition, we introduce
an optimized version of the model, demonstrating results that
validate its accuracy and equivalence. We apply this enhanced
model to simulate apoptosis in cells of an epithelial tumor
undergoing topical treatment and present the results of these
simulations.
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II. METHODS

II.1. Apoptosis model

The activation of the intrinsic pathway of apoptosis illustrated
in Figure 1. This process begins with the permeabilization of
the mitochondria, which leads to the release of cytochrome
C (CytC) into the cytoplasm. The regulation of mitochondrial
membrane permeabilization involves the Bcl-2 protein family,
which can promote or inhibit apoptosis by directly influencing
channels in the outer mitochondrial membrane. Specifically,
Bax facilitates the formation of pores, while Bcl-2 acts to
inhibit it. Once cytochrome C is released into the cytoplasm,
it triggers the assembly of a multiprotein complex known
as the apoptosome, which subsequently activates the caspase
cascade via caspase-9 (C9), resulting in cell death by apoptosis.
Additionally, after membrane permeabilization, the SMAC
protein (Second Mitochondria-derived Activator of Caspases)
is released into the cytoplasm, where it binds to inhibitors
of apoptosis (XIAPs). This binding prevents XIAPs from
stopping the apoptotic process, allowing apoptosis to progress
[22].

Figure 1. Intrinsic pathway of apoptosis activation. Cell degradation by
apoptosis begins when Caspase 3 (C3) is activated. The intrinsic pathway is
shaded in blue and begins when pores open in the mitochondrial membrane,
and Cytochrome C (CytC) and SMASCs are released into the cytosol.
Cytochrome C forms a protein complex, Apoptosome, which activates C3
through C9. The Bcl-2 protein family regulates the formation of pores in the
mitochondrial membrane: Bax and/or Bak, represented by Bax in the model,
are responsible for the formation of the pores, while Bcl-2, Bcl-xL, or Mcl-1,
represented by Bcl-2, inhibit it.

The Gillespie algorithm was used to simulate cell death by
apoptosis. This is a stochastic simulation method designed
to model the time evolution of chemical reactions in systems
with a finite number of molecules. The algorithm captures
the inherent randomness of the reaction events by simulating
the waiting times between reactions and determining which
reaction occurs next on the basis of their rates. It operates
under the Markovian assumption, meaning that the future
state of the system depends only on its current state. Using

exponential distributions to model waiting times and random
sampling to select reactions, the Gillespie algorithm effectively
simulates complex biochemical processes [23, 24].

Table 1. Reactions that participate in the intrinsic pathway

No Reaction

1 C8 + Bid→ C8:Bid
2 C9 + Bid→ C9:Bid
3 Bid + Bax→ Bid:Bax
4 Bid:Bax→ tBid + Bax
5 tBid + Bax→ tBid:Bax
6 tBid:Bax→ tBid + Bax
7 Bid2 + Bax→ Bid2:Bax
8 Bid2:Bax→ Bid2 + Bax
9 Cytc + Apaf→ Apop
10 Apop + pC9→ Apoptosome:2pC9
11 Apoptosome:2pC9→ Apop + 2pC9
12 C9 + C9→ C9:C9
13 C9:C9→ C9 + C9
14 XIAP + Smac→ XIAP:Smac
15 XIAP:Smac + pC9→ XIAP:pC9
16 XIAP:pC9→ XIAP + pC9
17 Apaf + Apaf→ Apaf:Apaf
18 Apaf:Apaf→ Apaf + Apaf
19 Cytc + CytC→ Cytc:CytC
20 Smac→ Smac

The interactions within the intrinsic pathway of apoptosis, as
depicted in Figure 1, are represented through the reactions
listed in Table 1 and the corresponding molecules in Table 2.
The rate constants for these reactions (K) were obtained from
the literature [25,26]. These reactions take place inside the cell,
specifically in the cytoplasm, which is assigned a volume of
Ω = 1000µm3, reflecting the typical cytoplasmic volume. The
model assumes that a healthy cell maintains an equilibrium
among the concentrations of molecules such as Bid, Bax,
Bcl-2, and the complexes Bcl2:tBid and Bcl2:Bax. Under these
conditions, the levels of tBid and activated Bax are sufficiently
low to prevent apoptosis. However, if this equilibrium is
disrupted, the concentration of tBid rises, leading to cell death.
To simulate this scenario, the initial concentration of tBid is
set to a value greater than zero, and this value is proportional
to the apoptotic signal. The model also considers that when
the concentration of activated Bax reaches the threshold value
of 10nM, pores are formed in the mitochondrial membrane,
activating reactions 19 and 20 from Table 1. Finally, the cell
is considered dead when the Caspase-3 concentration reaches
10nM.

All simulations were developed in the C programming
language1 and executed on a personal Asus computer
equipped with an Intel® Celeron® CPU N3050, running at
1.60 GHz, with 4 GB of RAM and a 64-bit operating system.

II.2. Optimization of the apoptosis model

The simulation of apoptosis in a single cell takes
approximately 7 seconds on the computer used for these
calculations. To simulate apoptosis in a tissue composed of

1Although not publicly archived, the simulation code supporting this study will be made available to researchers upon formal request to the corresponding author
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millions of cells, it is crucial to minimize this time as much as
possible. This can be achieved either by using a more powerful
computer or by optimizing the model for greater efficiency.
Table 2. Molecules and initial concentrations used in the model of cell death
by apoptosis using the Gillespie algorithm.

Symbol Description X0 (nM)

C8 Active form of Caspase-8 0
Bid BH3-binding domain

death agonist
25

C8 : Bid Complex of C8 with Bid 0
C9 : Bid Complex of C9 with Bid 0

pC3 Procaspase-3, inactive 100
C8 : p3 Complex of Caspase-8

with procaspase-3
0

C3 Active form of Caspase-3 0
C9 : pC3 Complex of C9 with

procaspase-3
0

Apa f Activating Factor
(Apaf-1)

80

pC9 Inactive form of
Apoptosome-9

20

Apop Apoptosome complex 0
Apoptosome : 2pC9 Complex of Apoptosome

with 2 procaspase-9
0

C9 : C9 Complex of C9 with C9 0
XIAP : Smac X-linked Inhibitor of

Apoptosis
30

XIAP : pC9 Complex of XIAP with
procaspase-9

0

XIAP : C9 Complex of XIAP with
caspase-9

0

Apa f : Apa f Complex of Apaf-1 dimer 0
Cytc : CytC Cytochrome c inside the

mitochondria
50

Smac SMAC inside the
mitochondria

50

The reactions that lead to the permeabilization of the
mithochondrial membrane are more time consuming in the
simulation. For this reason, we propose to eliminate the
reactions [3−7] shown in Table 1 and replace them with a single
reaction. This new reaction has tBid and Bax as reactants, tBid
and activated Bax as products, and K as the rate constant of
the optimized reaction (Figure 2). The new rate constant was
chosen so that the time to permeabilize the membrane would
be the same for both models. We used the original apoptosis
model to determine the opening times of the mitochondrial
membrane (torg). Subsequently, using the optimized model,
we change the parameter K to obtain the opening time of the
membrane (ti) for each value of K. Finally, we selected K = Ki
that corresponded to the ti closest to torg.

The strength of the apoptotic signal is directly proportional
to the initial concentration of tBid, as previously discussed. In
contrast, the initial concentration of Bcl2 influences membrane
permeabilization but is not included in the reaction of the
optimized model. To address this limitation, we calculated
the values of K for various initial concentrations of these

molecules, denoted as [tBid0] and [Bcl20]. This dependence
requires the application of the previously described method
each time these initial concentrations change, which is
inefficient given our goal of applying this optimized model
to a heterogeneous epithelial cell tumor, where cells exhibit
varying initial concentrations of all molecules.

Figure 2. Reactions that permeabilize the mitochondrial membrane (left) and
the resulting reaction in the optimized model (right).

To improve efficiency, we develop a matrix of K values
for every combination of [tBid0] and [Bcl20]. We defined a
range for initial tBid concentrations from 25nM to 2510nM
with increments of approximately 38nM, and for initial
Bcl2 concentrations from 40nM to 60nM with increments
of 5nM. Consequently, we calculated the values of K for
each combination, which resulted in a matrix with 67 rows
and 21 columns. This matrix can be used in simulations
involving multiple cells with different initial concentrations
of the aforementioned molecules.

II.3. Simulation of apoptosis in an epithelial tumor

Using the optimized model of apoptosis, we successfully
simulated an epithelial tumor after topical treatment. The
tumor is modeled as a three-dimensional matrix of m layers
deep and in each layer n × n cells. In this case, we modeled 6
layers of 100 × 100 cells each.

This model operates under the assumption that drug
concentration decreases exponentially with increasing tumor
depth. Since the initial concentration of tBid is directly related
to the apoptotic signal, we modeled a tumor with a depth of
1mm, where the initial concentration of tBid ([tBid0]) decreases
exponentially with depth. To incorporate cellular variability,
we assumed that the initial levels of the relevant proteins
differ between individual cells. The initial concentrations of
these proteins were uniformly distributed around their mean
values (see Table 2), with a variance of 20 %.

These simulations were performed on an Intel i7 computer
with 12 cores and 16GB of RAM.

III. RESULTS AND DISCUSSION

III.1. Optimization of mithochondrial membrane permeabilization
reactions
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Figure 3. Cell survival matrices at different tumor depths after topical treatment of an epithelial tumor. The tumor is modeled as a three-dimensional matrix
consisting of six layers, each containing 100× 100 cells. Cell death by apoptosis was simulated: cells that died within 3500 seconds after treatment are shown
in red, while surviving cells are shown in white.

In the apoptosis model, the mitochondrial membrane becomes
permeabilized, leading to the release of CytC and SMASCs
into the cytosol when the concentration of activated Bax
reaches 10nM, approximately 12040 molecules. To validate
the functionality of the optimized model, we compare the
time at which activated Bax reaches this threshold. Figure
4 shows only the first 200 seconds of the simulation in
which the membrane opening occurred to demonstrate that
in both models the time at which activated Bax reaches the
membrane opening threshold concentration is quite similar,
indicating that the two models are equivalent and confirming
the precision of the determined value of K.

In the apoptosis model, mitochondrial membrane
permeabilization occurs when activated Bax concentration
reaches 10 nM (∼ 12040 molecules), triggering the release
of cytochrome c (CytC) and SMASCs into the cytosol. To
validate the optimized model’s functionality, we compared
the time at which activated Bax reaches this threshold. Figure
4 displays the initial 200s of the simulations, demonstrating
comparable threshold attainment times in both models. This
kinetic equivalence confirms the consistency of the model and
validates the determined parameter K.

III.2. Influence of Initial Concentrations of Bcl-2 and tBid on the
Kinetic Constant of the reaction

We calculated K values for various initial concentrations of
tBid and Bcl-2. Figure 5 presents the density plot of the
resulting matrix. In particular, when the initial concentration

of tBid exceeds 137nM, K becomes independent of the initial
concentration of Bcl-2.

We initially performed a tumor simulation on a small scale. In
this model, the tumor is represented as a three-dimensional
array consisting of 67 layers, each layer corresponding to a
specific value of [tBid0] in the K matrix calculated previously.
Within each layer, we simulate cell death by apoptosis for 100
cells arranged in a 10 x 10 grid.
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Figure 4. Activated Bax concentration as a function of time for both models.
The black dashed line at 10 nM indicates that the times of mitochondrial
membrane permeabilization are similar.

The initial concentrations of the other proteins involved in the
apoptosis process varied around the mean values presented in
Table 2. For the simulation, we assumed that if a cell did not
undergo apoptosis within 3500 seconds, which is the mean
time of cell death by apoptosis, it would continue to survive.
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This approach allowed us to calculate the number of dead
cells in each layer, as illustrated in Figure 6.
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Figure 5. Density plot of the kinetic constant K as a function of the initial
concentrations of tBid and Bcl-2 in logarithmic scale.

In particular, in the upper layers of the tumor (where
[tBid0] > 251nm, corresponding to Z < 0.5 mm), the number
of dead cells does not increase as [tBid0] increases. This
result can be explained by considering that, when the initial
concentration of tBid is very high, the likelihood of the
optimized reaction occurring is also significantly elevated
in the Gillespie algorithm. Consequently, until Bax is fully
consumed, none of the other reactions in the model that
contribute to increasing Caspase-3 levels and subsequent cell
death takes place (see Table 2, references [26–29],).
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Figure 6. Number of dead cells as a function of tBid initial concentration.
In blue, the functional range in which [tBid0] is proportional to the apoptotic
signal.

To maintain the initial concentration of tBid proportional
to the strength of the apoptotic signal, we selected initial
concentrations in the range of 61 to 251nM for our subsequent
simulations. By narrowing the range of [tBid0] values, we
refined the K matrix used in the model, as shown in Figure
7. This adjustment highlights that at low concentrations
of tBid, variations in Bcl-2 become increasingly influential.
This effect is attributed to the distinct propermeabilizing
and antipermeabilizing functions that each protein performs,
respectively.

Figure 7. Density plot of the kinetic constant K as a function of the initial
concentrations of tBid and Bcl-2.

III.3. Simulation of cell death by apoptosis in tumor tissue

Using the results of the previous section, we simulated an
epithelial tumor treated with a topical drug to investigate
how the number of cells undergoing apoptosis changes as a
function of depth and the initial concentration of tBid. The
tumor is modeled as a three-dimensional matrix consisting
of six layers, each containing a 100 x 100 grid of cells. We
assume that the average initial concentration of tBid in each
of the six layers decreases exponentially. This approach is
supported by experimental evidence that shows that topical
drug application enhances absorption in the upper layers of
the skin [30, 31].

In the simulations, a cell was considered to undergo apoptosis
if death occurred before 3500 seconds. In this case, it was
assigned a value of 1. In contrast, if the cell did not die, it
was assigned a value of 0. The density plots representing
the matrices at various values of Z are presented in Figure
3. Dead cells are white and those that survive are red. It
can be seen that as the depth increases, the density of cells
that undergo apoptosis decreases. This result is in agreement
with experimental data that demonstrate that some topical
treatments are effective only for superficial tumors [32].
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Figure 8. Percentage of dead cells versus tumor depth (Z). The tumor is
modeled as a three-dimensional matrix consisting of six layers, each with
100×100 cells. A cell was considered apoptotic if it died within 3,500 seconds
of treatment. For each layer, the percentage of dead cells was calculated.

To get an idea of the exact number of cells that died as a
function of Z, we show these results in Figure 8. Almost 75 % of
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the cells near the surface died from apoptosis and this number
decreases as the depth of the tumor increases. At 1 mm depth,
more than 50 % cells survive.

III.4. Simulation time versus optimization

Figure 9 compares the simulation times for both models in
simulations with different initial concentrations of Bcl-2, while
keeping the initial concentrations of other molecules constant.
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Figure 9. Simulation time as a function of the initial concentration of Bcl-2 for
the apoptosis model that includes all reactions of membrane permeabilization
(original) and the one that includes only one reaction (optimized).

The recorded time reflects how long each simulation
takes to complete the membrane permeabilization process,
which involves the set of simplified reactions. This time
represents how long both simulations take to complete the
permeabilization process of the membrane, where the set
of reactions that we simplify participate. We can see that
by increasing the initial concentration of Bcl-2, keeping
[tBid0] constant, the time of the original model increases,
while in the optimized model it is practically independent
of this variable. In particular, at high initial concentrations
of Bcl-2, the advantages of our optimization become even
more pronounced. Given that this model will be applied
to thousands of cells within tumor tissue, optimization is
significantly improved.

In Tables 3 and 4 we show a comparison of simulation
times for various initial concentrations of tBid and Bcl-2. The
concentration values in the tables were selected as the limits
used in our tumor simulations.

Table 3. Simulation time for the unoptimized model (s)

Concentration tBid0 = 62.7 nM tBid0 = 250.8 nM

Bcl2o = 40nM 3.90 3.515
Bcl2o = 60nM 6.626 4.406

Table 4. Simulation time for the optimized model (s)

Concentration tBid0 = 62.7 nM tBid0 = 250.8 nM

Bcl2o = 40nM 0.24861 0.134928
Bcl2o = 60nM 0.341222 0.144051

These results demonstrate that the performance of the
optimized model is superior. To help the reader better

understand the machine time saved with the proposed
optimization, we present a straightforward calculation. We
simulate 10000 cells across 6 layers. If each cell requires 6.626s
to open the membrane, representing the maximum possible
time, the total computational time would be 6 × 10000 ×
6.626 = 397560 s, which is equivalent to approximately 4.5
days of simulation. In contrast, using the optimized model,
the maximum simulation time would be 6 × 10000 × 0.341 =
20460 s, or about 5.6 hours. This significant reduction in
machine time demonstrates that our optimization represents
a significant advance in the study of cell death by apoptosis.

IV. CONCLUSION

In this study, we have developed a model that qualitatively
simulates cell death by apoptosis, capturing the timing
and concentration dynamics of key molecules involved in
the intrinsic pathways. Our optimization of the equations
governing mitochondrial membrane permeabilization has
significantly reduced simulation times without compromising
the accuracy of the cell death timing or the qualitative
behavior of the involved molecules. The findings regarding
the independence of K from Bcl-2 concentrations at high
tBid levels provide valuable insights into the complex
interactions within apoptotic signaling pathways. The
substantial reduction in computation time enhances the
feasibility of applying our model to simulate apoptosis in
tissues containing large numbers of cells, making it a powerful
tool for studying cell death in various biological contexts,
particularly in tumor environments. Our model not only
contributes to a deeper understanding of apoptosis but also
lays the groundwork for future research aimed at exploring
therapeutic strategies that target apoptotic pathways. We
believe that this work will facilitate further advancements
in computational biology and cancer research, ultimately
leading to improved treatment approaches for diseases
characterized by dysregulated apoptosis.
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