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The behavior of continuously deformed cellular automata rules is
explored. The analysis is performed in terms of three entropic
measures, entropy density, excess entropy, and entropy distance.
These measures have been suggested to be indicative of
the capabilities in the storage, processing, and transmission of
information. A wealth of different behaviors is found that points to
a richness of unexplored rules. Transitions can involve the loss
of memory between the discrete rules at the start and end of
the deformation parameter values. The behavior of the entropic
measures, especially the surge of excess entropy on the verge of
transition to disordered states, suggests the occurrence of enhanced
computation at the edge of chaos for different types of phase
transitions.

Se estudia el comportamiento de autómatas celulares
contı́nuamente deformados. El análisis se efectúa en términos de
magnitudes entrópicas indicativas de las capacidades del sistema
de almacenar, producir y transportar información. Se hallŕon una
amplitud de comportamientos al abrir el espacio de reglas a un
conjunto infinito irracional aún sin explorar. Transiciones pueden
comprender la pérdida de memoria al comienzo y al final de la
transición. Aumento de la capacidad de cómputo al borde del caos
es hallado y se muestra que tal proceso puede ocurrir en diferentes
tipos de transiciones de fases pero en todos los casos, caracterizada
por un aumento brusco del exceso de entropı́a.

PACS: Entropy in information theory (entropı́a en teorı́a de la información), 89.70.cf

I. INTRODUCTION

The idea of a dynamical system as a computational system that
stores, transmit, and produces information is a compelling
one that has been the focus of attention for a while [1].
Cellular automata (CA) are a kind of system that can exhibit
from very trivial behavior to very complex one, including
universal Turing machine capabilities [2]. This richness of
behavior comes despite being defined by local rules that act
over a neighborhood for each given cell. The spatiotemporal
diagrams of CA can show from complete randomness to
long-range correlation both in the spatial and temporal
dimensions (See [3] and reference therein).

The enhanced computation at the edge of chaos hypothesis
(EOC) states that in certain dynamical systems, as the
dynamics evolve towards a chaotic regime, improved
computational capabilities of the system are claimed to
be found on the verge of the transition [4–6]. Improved
computational capabilities can mean that the system, given
appropriate initial conditions, can perform some ”useful”
task. However, in a more general context, it can be taken to
mean that the system is capable of improved capacity to store,
transmit, and produce information in Shannon sense [7].

There are several natural and artificial systems where EOC
has been claimed to occur [8–12]; CA has been one of
them. Langton [5] used a lambda parameter, defined as
the fraction of quiescent state in a CA rule. A quiescent
state is an arbitrary chosen one. Langton [5] and afterward,
Packard [13] performed numerical simulations to conclude

that, on average, as λ, increases from 0, the CA rules define
spatiotemporal maps that change from a fixed point regime, to
periodic, to complex and finally to chaotic behavior. Packard
[13] even claimed that CA capable of algorithmic abilities were
to be sought at those critical values of λ where a transition to
the chaotic behavior occurs. Crutchfield et al. [7] performed
extensive Monte Carlo simulations and failed to found EOC
in the sense of Packard claim.

Recently Estevez et al. [14] have shown evidence of EOC in
CA but in the broader sense and working with rules that
can change continuously as a transition is made from one
rule to another. The idea is to change one or several entries
in the CA rule allowing a geometry to be introduced in the
CA space. Two instances of EOC were reported by Estevez et
al. as measured using entropic magnitudes that characterize
spatial disorder or spatial structuring. The price paid for such
continuous deformation of CA rules is that discrete states are
abandoned. In their study, the λ parameter plays no role in
the transition.

In this contribution, we further explore EOC in elementary
CA. We introduce stability diagrams to characterize the
robustness of rules under entries deformation. A classification
of rule transition is attempted based on the observed
experimental results. Several EOCs are reported and
discussed in the text. The paper is organized as follows: first,
CA are formally introduced, and continuous deformation
of CA rules is defined following the pioneer works of
Pedersen [15]. The entropic magnitudes used to characterize
the dynamical behavior of the system are introduced. Results
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are described from numerical simulations and discussed.
Conclusion follows.

II. CELLULAR AUTOMATA

For the purpose of this paper a discrete cellular automaton
can be defined by the tern (Σ, s,Φ), where Σ is a finite alphabet
which will be taken as binary (Σ = {0, 1}); s = s0, s1, . . . sN−1 is a
set of sites arranged in a ring, and; Φ is a local updating rule.
If st = st

0, s
t
1, . . . s

t
N−1 denotes a particular configuration of the

sites values at time t, then

st
i = Φ

[
s(t−1)

i−r , . . . , s
(t−1)
i−1 , s

(t−1)
i , s(t−1)

i+1 , . . . , s
(t−1)
i+r

]
. (1)

We will be considering the so called elementary rules (ECA)
where r = 1 and equation (1) reduces to

st
i = Φ

[
s(t−1)

i−1 , s
(t−1)
i , s(t−1)

i+1

]
. (2)

The above definition leads to a look up table for the ECA rule,

si−1 si si+1 rule
0 0 0 Φ(0, 0, 0)
0 0 1 Φ(0, 0, 1)
0 1 0 Φ(0, 1, 0)
0 1 1 Φ(0, 1, 1)
1 0 0 Φ(1, 0, 0)
1 0 1 Φ(1, 0, 1)
1 1 0 Φ(1, 1, 0)
1 1 1 Φ(1, 1, 1)

There are a total of 223
= 256 possible ECA rules which can be

labelled in different ways. Wolfram numbering scheme assign
to each rule Φ a label R according to [16]:

R = Φ(0, 0, 0)20 +Φ(0, 0, 1)21 +Φ(0, 1, 0)22 + . . .+Φ(1, 1, 1)27. (3)

Instead we can use the binary number Φ(1, 1, 1) . . . Φ(0, 1, 0)
Φ(0, 0, 1)Φ(0, 0, 0), which is the binary representation of R. For
example

01110110→ R = 118

There are a total of 223
= 256 possible ECA rules.

Langston λ [5] parameter can be defined as

λ =
[Φ(1, 1, 1) + . . . + Φ(0, 1, 0) + Φ(0, 0, 1) + Φ(0, 0, 0)]

8

which is just the fraction of entries in the CA rule that turns a
state into 1, taken as the quiescent state.

II.1. Continuous state CA

The ECA rules define a hypercube; each corner of the
hypercube is labeled by a rule, so there are 256 corners. Two
corners of the hypercube share and edge if they differ in only
one entry. The construction is equivalent to a graph, each
node of the graph represents a rule, and two nodes are linked

by an edge if they differ in one entry. Figure 1 shows the local
topology of the graph around one rule up to second neighbors.
The problem of the discrete CA space is that two rules sharing
an edge need not have a more similar behavior than two nodes
that do not share an edge. There is no apparent geometry in the
CA discrete space: In the ECA rules, no apparent geometric
order can be defined, were behavior changes gradually as the
system changes from one rule to the next in the ordering.

Figure 1. Local topology of the connectivity graph representing the ECA rules.
Green nodes connected by red edges are the first neighbors. Black nodes
represent the second neighbors. The complete graph of the 256 rules can be
built around a central one by incorporating more coordination spheres.

In an attempt to define a gradual transition from one rule
to another, Pedersen sacrificed the discrete nature of the
CA rules and allowed to deform CA rules in a continuous
way [15]. The idea goes as follows, Consider a rule with
binary representation 01110110 (ECA: 118) and make any of
the entries a continuous variable, for example, 01ξ10110, now
ξ can change continuously from 1 to 0 and the initial binary
rule changes gradually to the final binary rule 0101001 (ECA:
86) (See figure 2).

01  10110

118 01110110

0101011086

Figure 2. The transition from one rule to another as we continuously change
an entry in the look-up table.

One can chose how when changing ξ the rule transforms, in
a number of ways, whose specifics have been shown not to
be essential for the analysis. We follow Pedersen [15]. A real
valued function β, taken as β(si−1sisi+1) = 4si−1 + 2si + si+1, and
an interpolating function f (x): f (β(si−1sisi+1)) : [0, 7] → [0, 1]
are defined. β will transform the neighborhood configuration
into a real value which will be used as the argument of f (x).
On the other ahnd, the interpolating function must give the
discrete case for integer values of its argument but, apart from
that, can be chosen freely. Following Pedersen, a quadratic
interpolating function will be used for non integer value of
the argument x,
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f (x) =


2[ f (n + 1) − f (n)](x − n)2 + f (n), for n ≤ x ≤ n + 1/2

2[ f (n) − f (n + 1)](x − n − 1)2 + f (n + 1), for n + 1/2 ≤ x ≤ n + 1
, (4)

while the corresponding discrete rule is used if the argument
x is an integer. n(≡ bxc) is the largest integer smaller than x
( f (n) will therefore correspond to the discrete rule of the CA,
already defined by Φ).

The introduction of a real variable ξ within a rule means that
the states of the cells are no longer binary values {0, 1} but
any real value in the interval [0, 1]. In order to recover the
binary values for the cell states, once all cell values have been
updated, a threshold is calculated. All cell values above the
threshold are taken as 1, 0 otherwise. As a threshold, the mean
value over all cells at a given time is used. This discretization
is again, the one followed by Pedersen, another choice would
be to use the median as a threshold value. The later preserves
the balance between the two states and removes any dynamic
associated with the production of symbols.

The simulations were performed over a ring of 5×103 cells. As
the initial configuration, random values were used (random
binary digits were taken from www.random.org). The system
was left to evolve for 5 × 103 time steps. Averaging over
different initial conditions was done before presenting the
results. It was noticed that the average result did not differ
from the individual runs. We settle to present the average
over ten different initial conditions, as increasing the number
did not change the results. The last ten spatial configurations
were taken for each run, so the final averaging was over 102

spatial configurations. Also, calculations were occasionally
performed for 104, 5 × 104, 105, and 106 cells to see if size
dependence was an issue in the simulations. In all cases, the
result did not change with the number of cells.

A dynamical system is chaotic if and only if it is transitive,
and its periodic points set is dense in the phase space [17]. For
a system to be transitive, surjectivity is a necessary condition.
Hedlund [18] has proved that a one-dimensional discrete CA
is surjective if and only if is k−balanced for all k ∈ N. In the
case of ECA rules, a 1−balance implies that the binary look-up
table of the rule must have the same number of 0′s and 1′s.
We will consider a discrete binary CA k−balanced if, evolving
from a random starting sequence, the fraction of one symbol
(0 or 1) remains 1/2 in the kth time step.

III. ENTROPIC MEASURES

Consider a bi-infinite sequence S(t) = . . . s(t)
−2s(t)
−1s(t)

0 s(t)
1 s(t)

2 . . .,
where s(t)

i is the binary symbol observed in the cell i at time step
t. We denote by S(t)(i,L) the substring of length L, starting at cell
si, and by S(.,L) the sequence of the substring regardless of the
starting cell position S(.,L) = S(i,L). p[S(.,L)] is the probability
of finding the sequence S(.,L) in the bi-infinite string. Shannon

block entropy of length L is given by,

HS(L) = −
∑
S(.,L)

p[S(.,L)] log p[S(.,L)]. (5)

where the sum goes over all possible sequences S(.,L) of length
L. Entropy density can be written in terms of the block entropy,

hµ(S) = lı́m
L→∞

HS(L)
L

. (6)

Shannon entropy density hµ will be used as a measure of
information production [19].

There are different procedures to estimate hµ directly from
the data [20, 21]. In this work, estimation via Lempel-Ziv
factorization [22] will be used; details can be found elsewhere
[23]. Our data for each estimation will be the 105 binary values
of each configuration s(t) studied.

For a measure of the amount of structuring in a sequence,
excess entropy E, originally termed as effective complexity
measure [24], will be used. Let I[X : Y] = H[X]+H[Y]−H[X,Y]
be the mutual information between X and Y [19]. I[X : Y] is a
measure of the amount of information one variable carries
regarding the other. Excess entropy measures the mutual
information between two infinite halves of the sequence
[24, 25],

E(S) = I[. . . , s−1 : s0, s1, . . .], (7)

that is, how much information one halve carries about the
other and vice-versa. E measures the correlation at all scales
in a process and is related to the intrinsic memory of a
system, related to pattern production and context preservation
[25]. Excess entropy is also estimated through Lempel-Ziv
factorization using a random shuffle procedure [26], as
explained in [14].

Finally, we need a measure of the sensitivity of the system
evolution to the initial conditions. A fingerprint of chaoticity
is that small perturbations of initial conditions lead to an
exponential growth of the difference in the trajectories. We
need a metric to measure a ”distance”between two sequences,
a trivial choice is the so called Hamming distance, which is the
fraction of sites where both sequences are different [19]. The
Hamming distance can be unsatisfactory for several reasons,
consider, for example, a CA rule that merely shifts the initial
string by one cell to the left. Hamming distance between
two consecutive sequences could have maximum Hamming
distance, and yet, the production of the new sequence is quite
trivial. In contrast, we need a metric that captures the difficulty
of predicting a second sequence from the knowledge of the
first one. This type of distance is called information distance
and will be denoted by d(s, p). An information distance based
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on algorithmic randomness [27] will be used. The algorithmic
randomness (also known as Kolmogorov complexity) of a
string K(s) is the length of the shortest algorithm s∗ capable of
producing the string s on a Universal Turing Machine (K(s) =
|s∗|). Accordingly, K(s|p∗), known as algorithmic conditional
randomness, is the length of the shortest program able to
reproduce s if the program p∗, reproducing the string p, is
given. d(s, p) can be defined as [28],

d(s, p) =
max{K(s|p∗),K(p|s∗)}

max{K(s),K(p)}
. (8)

d(s, p) measures how ”hardı̈s, from an algorithmic perspective,
to reproduce string s and p: two sequences which can be
derived one from the other by a small-sized algorithm, will
result in a small d(s, p). d(s, p) will be estimated again using
Lempel-Ziv factorization as explained in [23],

dLZ(s, p) =
hµ(sp) −min{hµ(s), hµ(p)}

max{hµ(s), hµ(p)}
. (9)

To test for chaoticity, dLZ will be used in the following way,
two identical initial conditions, only differing in one site si
taken randomly, are left to evolve. After a sufficient number
of time steps, the information distance between both systems
is calculated using (9). In this way, dLZ is a measure of the
system sensitivity to a minimum perturbation of the initial
state. We tested the results for different initial conditions, again
no change was observed for averaging using more than ten
pairs of initial conditions; the final averaging was therefore
taken for 20 different pairs of initial conditions.

For a sequence, S, large values of excess entropy, and low
values of entropy density signal the prevalence of patterns in
the sequence and the lack of randomness or unpredictability.
In such a case, observing a sufficiently long but finite substring
of the sequence leads to a prediction of the whole string
with a small error. It is said that the system has a large
intrinsic memory, but a small information production, when
the entropy density is high, and the excess entropy is low,
predictability is hard and, regardless of the length of the
observed substring, the reconstruction of the whole sequence
can not be done with a small error [25]. It is said that the
system has a high information production but small intrinsic
memory.

In a random sequence, there are no correlations between
cell values for any block length. For that reason, the
mutual information between the sequence two halves is
zero, and excess entropy is zero, the system has no intrinsic
memory. Every cell value carries new information, as it
can not be predicted from the knowledge of other cells,
information production is high, and entropy density is near
1. A significant computational capability will need a balance
between information production and information storage if
we think of the computational capabilities as the system’s
ability to store, transmit, and modify information.

IV. RESULTS AND DISCUSSION

As already described, we perform a transformation between
two discrete rules by changing one entry ξ in the rule table.

There is a new rule for each different real value of ξ; therefore,
formally, an infinite number of rules can be found between the
two discrete rules at the extreme. However, when analyzing
entropy density and excess entropy of the ”intermediate”
rules, we find that there are intervals where the dynamic
behavior of the rules do not change. At a certain value of the ξ
parameter, a jump in hµ and E is found. The jumps are taken as
indicative of a ”phase transition”. In the whole range, [0, 1] of
variation of the ξ parameter, several of such jumps can occur.
In our study we identified six different types of behaviors as
a discrete ECA rule changes to another discrete ECA rule

1. There are no jumps in hµ and E jumps in the whole region
of variation of ξ. This can only happen if discrete ECA
rules at both sides have the same type of spatiotemporal
map.

2. There is a single jump in hµ and E in the whole region of
variation of ξ.

3. There are two jumps in hµ and E in the whole region
of variation of ξ. Usually, the first jump results in a
high value of entropy density and a low value of excess
entropy, the second jump is in the opposite.

4. hµ and E shows irregular behavior with multiple jumps
in the region of variation of ξ.

5. When transitioning to a high entropy density state,
excess entropy shows a well-defined peak, which can
be narrower or broader.

Some rules can show a mixture of behaviors.

Transition 238 → 239 is an example of the first type (Figure
3). Both discrete rules have trivial spatiotemporal maps: After
a transient, they reduce any initial random condition to a
sequence of 0′s.
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Figure 3. Entropy density (blue) and excess entropy (black) behaviour along
the transition 238 → 239. Both end rules are trivial as they transform any
initial condition to zero. The small value of hµ above zero is consequence of
the bias in the numerical estimation due to the finite nature of data. This is an
example of type 1 transition.

For the other types of transitions, some jump in the entropic
measures is found while changing the corresponding look-up
table entry. It will be convenient to define a stability criteria
that characterize how robust is a transition to changes in the
ξ entry.
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A stability parameter is defined for a given entry ina CA
rule, as the value of ξ (ξ is changing from 0 → 1) or 1 − ξ
(ξ is changing from 1 → 0) where a jump in the dynamical
behavior is observed as measured by both hµ and E. For each
discrete state CA rule, we have a total of 8 possible transitions
by changing each entry on the look-up table (figure 1).
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Figure 4. Stability diagram for rule 110. Changing each of the 8 entries in
the look-up table determines a transition between ECA 110 and another ECA
rule. In blue the stability value where a ”phase” transition is seen as a jump
in hµ and E.
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Figure 5. (up) Entropy density (blue) and excess entropy (black) behaviour
along the transition 110(01101110)→ 106(01101010). This type of transition is
characterize by a single jump in the entropy density and the excess entropy
in the whole range of the (01101ξ10) entry. Rule 110 is confirmed to be
a complex rule capable of exhibiting universal Turing machine capabilities.
(down) Spatio-temporal map the both discrete rules and two rules at
intermediate values of ξ.

In figure 4 the stability diagram of rule 110 is shown. From
the stability values, it is seen that rule 110 has a phase change

for rather small values: the rule is sensitive to small variations
of its look-up table. Figure 5 (up) shows the change in the
entropic measures as a function of ξ. For the transformation,
110 → 106, which corresponds to a change in the entry
01101ξ10 starting with ξ = 1, both the entropy density and
the excess entropy have only one jump for a value of 1 − 0.03
(see figure 4). ECA 110 is a complex rule where Universal
Turing Machine computation capabilities have been found
[16]. ECA 106 has been reported to be a complex rule, but the
spatiotemporal maps of figure 5 (down) shows that in rule 106,
we do not find the same time persistence of local structures as
those found in rule 110. At the intermediate values of ξ, the
spatiotemporal maps show a behavior more resembling rule
106, which corroborates the entropic measures result. This
type of transition is typical of the second one. At one extreme
(ξ = 0) rule 106, local characteristic patterns are found in
the spatiotemporal maps, as ξ changes these features become
smaller (ξ = 0.03) up to a value (ξ = 0.97) where a qualitative
change in behavior is observed. The final rule (ξ = 1) exhibit
a different dynamics than the original one.
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Figure 6. (up) Entropy density (blue) and excess entropy (black) behaviour
along the transition 110(01101110) → 46(00101110). This type of transition is
characterize by two jump in the entropy density and the excess entropy as the
(0ξ101110) entry changes value. Rule 46 is a shift rule where the initial values
are shifted to the left one cell at each time step. (down) Spatio-temporal map
of both discrete rules and a rule at an intermediate value of ξ.

For rule ECA 110 as we change the six (counting start at zero)
entry 0ξ101110 towards rule 46, the third type of behavior is
found (see figure 6 (up)). In this case, two jumps in the entropic
measures can be observed, resulting in that for intermediate
values of ξ, the qualitative behavior of the spatiotemporal
maps is different from both extreme discrete rules. ECA 46 is
a shift map. It shifts the initial configuration one cell to the left
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at each time step, as can be seen in the first spatiotemporal
map of figure 6 (down)). For intermediate values of ξ, the
spatiotemporal map is different from both discrete ECA rules,
as observed in the second spatiotemporal map of figure 6
(down). This intermediate rule exhibits large values of hµ and
small values of excess entropy, pointing to chaotic behavior. A
similar transition is found for all entries of the rule 110 except
01101ξ10 described previously.
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Figure 7. (up) Entropy density (blue) and excess entropy (black) behaviour
along the transition 22(00011010) → 30(00011110). This type of transition is
characterized by two jumps in the entropy density and the excess entropy as
the (00011ξ10) entry changes value. Rule 22 is an interesting rule, with an
initial configuration of only one cell set to one, it develops a fractal structure
following the Pascal triangle construction. (down) Both discrete rules give
rise to chaotic spatiotemporal maps, at an intermediate value of ξ loss of
randomness and increase structuring is observed.

The transition from ECA 22 to ECA 30 is another example
of a transition with two clear jumps in the entropy measures
but different from the previous example. As figure 7 shows,
the discrete rules are spatially chaotic as seen through the
entropy density and the excess entropy yet, in the interval of
ξ ∈ [0.63, 0.8] to lower values of entropy density and larger
values of excess entropy. hµ does not decrease to zero, but to
an intermediate value slightly above 0.4, while E jumps to a
value of 3. The intermediate value of information production
and increased information structuring can be observed in the
second map of figure 7 (down).

The transition from rule 78 to rule 76 is an example of an
irregular transition as measured by the entropic magnitudes
(Figure 8 (up)). Rule 76 has binary representation 01001110
and changing the second entry 010011ξ0 moves towards rule
78 (01001100). After a few steps, both rules are trivial, as can
be seen in Figure 8 (down). Rule 76 only differs from the
identity rule in the entry of the most significant bit, while rule
78 differs in two entries from the identity rule. Starting from

a random initial configuration rule, 76 does little in terms of
ordering, and as a result, entropy density remains high, while
almost no structuring is performed and E = 0. At a ξ value
around 0.05, this dynamics is lost. hµ jumps to values around
0.15, and excess entropy jumps to values around 3. From there
on, both measures fluctuate. Fluctuations in hµ ranges from 0
to 0.7, while in E from 1.6 to 5. The reader must notice that
there is no unique dependency between hµ and E, the same
value of entropy density can result in different values of excess
entropy, showing that the different continuous rules are of
different natures. From the value ξ = 0.8 to 1, the dynamics
as measured by hµ and E settles to values around those found
for the rule 78. Rule 78 is able to transform the initial random
condition and perform some amount of structuring as both hµ
and E attains intermediate values. Rule 78 is 1-balanced, so
erasure of one symbol is not a driving force in the structuring
of the initial configuration.
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Figure 8. (up) Entropy density (blue) and excess entropy (black) behaviour
along the transition 76(01001100) → 78(01001110). This type of transition
is characterize by an irregular behaviour of both the entropy density
and the excess entropy as the (010011ξ0) entry changes value. (down)
Spatio-temporal map of the discrete rules and an intermediate rule with
ξ = 0.6. After a transient interval, both discrete rules are rather trivial.

Finally, a different type of transition is shown in figure 9. The
transition is from rule 46→ 62, but in figure 9 only the initial
region of the transition is shown. The striking feature of this
transition is the occurrence of a peak for the excess entropy just
before a jump of hµ towards higher values. At the same point,
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dLZ also has a jump. This transition has been described before
and claimed to be a fingerprint of enhanced computation at
the edge of chaos [14]. The spatiotemporal maps show a shift
behaviour for rule 46 (9a), right to the phase transition chaotic
behaviour is recognized (9c). At the edge of chaos (9b), the
spatiotemporal map is more complex, showing a mixture of
shift behavior and the production of features that persist in
time and interact between them.

(a) (b) (c)

Figure 9. (upper) Entropy density (blue) and excess entropy (black) behavior
in a small initial interval of the transition 46 → 63. (middle) The information
distance dLZ between two one cell perturbed initial condition after a large
number of time steps. A peak in the excess entropy happens just on the
verge of a jump in the entropy density towards chaotic behavior. This is
further emphasized by the fact that the sensitivity to the initial conditions,
as measured by dLZ, has a jump to higher values at the same values
where the jump in hµ can be seen. This behavior is taken as evidence for
enhanced computation at the edge of chaos. (lower) (a) corresponds to the
spatial-temporal maps at ξ = 0; (b) at the ξ = 0.018 value where the E attains
a maximum and; (c) at ξ = 0.05.

A transition with similar feature and yet different in other
aspects are that of rule 146 → 144 shown in figure 10. In the
interval ξ ∈ [0.12, 0.3] several transitions occurs. The system
at rule 144 has a value of entropy density around 0.57 that
drops to zero at ξ = 0.12. The excess extropy, which was
around 0.2, also drops to zero. At ξ = 0.2 hµ has a jump to
0.85 and increases in a short interval to reach 1 at ξ = 0.3.
Just before the jump of the entropy density, a very narrow
peak in excess entropy can be seen, reaching a value of 4
to drop immediately reaching zero at ξ = 0.3 (figure 10left).
The spatiotemporal maps (10right) help to understand the
transitions. At ξ = 0.18 where hµ = 0, the map shows the
occurrence of a triggering effect. Erasure of symbols starts

at some time step rapidly evolving to overtake the whole
spatial configuration, E = 0 due to the constant nature of
the arrangement. At ξ = 0.22, where E has a maximum,
restructuring of the initial random condition happens at an
initial transient stage of a few steps and then a combination of
shift map and the emergence of local features with small-time
span can be seen which appear random. Finally, at ξ = 0.3, a
random map shows small, uncorrelated, short-lived features.
Although it is clear that the surge of excess entropy is related to
a spatiotemporal map with better processing, production, and
storage of information, the spatiotemporal map is by no means
complex, perhaps pointing to an insufficient improvement of
those abilities.
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Figure 10. (up) Entropy density (blue) and excess entropy (black) behaviour
along the transition 144→ 146. A peak in the excess entropy happens just on
the verge of a jump in the entropy density towards chaotic behaviour, before
that at ξ ≈ 0.18 entropy density and excess entropy drops to zero.(down)
Spatio-temporal maps of the three points marked with arrow in the right plot.
See text for details.

V. CONCLUSION

The results show the richness of transitions that can be
found in ECA rules. For those transitions between discrete
rules that involve intervals with chaotic behavior (hµ ≈ 1,
E = 0), memory is necessarily lost in the transition: both
discrete ECA rules do not share information in terms of
behavior. EOC can happen in a number of transition and
indeed has been reported for a number of them, the nature
of the EOC can show different variations, but all involve a
surge in the excess entropy at the onset of chaos. Our work
suggests that if more than two entries in the look-up table are
changed simultaneously, unexplored regions can emerge in
a two-dimensional phase space. Such simulations have been
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performed and will be reported elsewhere. In this regard, what
we are witnessing in our results, can be the one-dimensional
intercept of such regions, which could explain some of the
observed behaviors as a projection of regions from higher
dimensions.
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