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In this article, the impact of consistent internal heat source and
varying downward gravity force on the onset of convective movement
in an anisotropic porous matrix is studied numerically applying the
high-term Galerkin technique. The gravity field variations with depth
z are considered to be of four types: (a) G(z) = −z, (b) G(z) = −z2,
(c) G(z) = −z3, and (d) G(z) = −(ez

− 1). Outcomes show that both
the thermal anisotropy parameter η and gravity variation parameter
λ delay the onset of convection, while the internal heating parameter
Hs and the mechanical anisotropy parameter ξ speed up the arrival
of convective activity. The dimension of the convection cells boosts
with η, ξ and λ, while it diminishes with Hs. It is also identified that
the system shows maximum stability for case (d), while it is minimum
for case (c).

En este artı́culo se estudia numéricamente el impacto de una fuente
de calor interna y una fuerza de gravedad variable que apunta hacia
abajo, sobre el comienzo de la convección en una matriz porosa
anisotrópica, aplicando la técnica de términos alto de Galerkin. La
variación del campo gravitatorio con la profundidad z se considera
de cuatro tipos: (a) G(z) = −z, (b) G(z) = −z2, (c) G(z) = −z3, y (d)
G(z) = −(ez

− 1). Los resultados muestran que tanto el parámetro
de anisotropı́a térmica η como el de variación de la gravedad λ
retrasan el comienzo de la convección, mientras que el parámetro
de calentamiento interno Hs y el de anisotropı́a mecánica ξ aceleran
el comienzo de la actividad convectiva. La dimensión de las celdas
de convección aumenta η, ξ y λ, mientras que decrece Hs. También
se observa que el sistema muestra máxima estabilidad para el caso
(d), y mı́nima para (c).

PACS: Convection (convección), 44.25.+f; Thermal convection (fluid dynamics) (convección térmica (dinámica de fluidos)), 47.55.pb; Porous
materials, flow thorugh (materiales porosos, flujo a través), 47.56.+r

I. INTRODUCTION

Convective instability in a porous medium, associated
to buoyancy due to temperature gradients, has attracted
strong interest in the past as well as nowadays because
of its many applications. They include underground
transport of impurities, chilling of electronic components,
the underground exclusion of nuclear waste, petroleum
drilling, chemical and food practicing [1–6]. The study of
the onset of convective flow in a porous layer starts with
the Horton-Rogers-Lapwood (HRL) instability problem [7].
There, the authors studied heat driven convection and
obtained that the critical Darcy-Rayleigh number is 4π2. The
extension of the classical HRL convection problem was well
reviewed by Nield and Bejan [8].

Anisotropy in porous media, which arises from
non-symmetrical pattern of porous matrix or fibres, is
commonly found in nature and in many engineering
applications. Rock, soils and fibrous insulating materials
are excellent instances of anisotropic porous media. The
thermal instability in a layer of porous matrix with
anisotropic permeability was originally studied by Castinel
and Combarnous [9]. They obtained the conditions on the
start of convection experimentally as well as theoretically.
Epherre [10] extended the instability examination to a porous
medium layer with anisotropic thermal diffusivity. Nonlinear

instability due to a heat gradient in an anisotropic porous
matrix was studied by Kvernvold and Tyvand [11]. They
derived the criterion for the start of convection theoretically.
Later, Degan et al. [12], Payne et al. [13], Rees and Postelnicu
[14], Govinder [15], Malashetty and Swamy [16], Yadav
and Kim [17], Shivakumara et al. [18] and Mahajan and
Nandal [19] extended this problem to the cases of vertical
anisotropic porous layer, anisotropic permeability on Darcy’s
law, inclined anisotropic porous layer, Coriolise effect, duble
diffusive convection, transient convective activities, local
thermal non-equilibrium and Brinkman effects, respectively.

The impact of internal heating plays a very important
character on the thermal convection in porous media due
to its natural occurrence as well as its importance to control
the convective motion in many engineering applications. A
practical situation, in which a porous medium can have
internal heat source, occurs in the underground removal of
radioactive dissipate materials, geophysics, crystal growth,
miniaturization of electronic components and exothermic
chemical processes in packed-bed reactors. The power of
internal warming on the onset of convection in a porous
matrix was explored by Gasser and Kazimi [20]. They
obtained the critical interior and outer Rayleigh numbers
for the start of convective motion. Parthiban and Patil [21]
investigated the convective activity in an asymmetric porous
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layer with internal heating and inclined heat gradient. The
effects of Darcy number and uniform heat supply on the
onset of convection in a porous medium layer was studied
by Nouri-Borujerdi et al. [22]. Bhadauria et al. [23] examined
the significance of rotation on the start of convection in an
anisotropic porous layer with internal heat generation by
a weak nonlinear analysis. Very recently, Storesletten and
Rees [24] researched the onset of convection in an inclined
anisotropic porous layer persuaded by a constant distribution
of internally heat sources. For more details on the onset of
convection with internal warm source, we refer the reader to
references [25–35].

Although most studies related to convective instability are
concerned with constant gravity field, convection due to a
varying gravity field has received small attention. However,
there are many convective conditions that exist in science
and engineering such as large scale flows in the Earth’s crust
and in crystals growth where the variation of gravity with
depth in the apparatus is important [36–39]. Therefore, the
analysis of fluid convection with changeable gravity appears
essential. Kaloni and Qiao [40] examined the arrival of heat
convection in a porous matrix with inclined thermal gradient
and gravitational field which was changing linearly with
depth in the layer. Alex et al. [41–43] extended their stability
examination with throughflow, internal heat source and
anisotropic. They detected that gravity increasing upwards
is a destabilizing influence. Rionero and Straughan [44]
presented the convective instability in a porous matrix
with a uneven gravity field and heat source using linear
and non-linear investigations. They studied three different
categories of changeable gravity fields on the initiation of
convective activity. The influence of magnetic force and
gravity difference on the launch of convective movement in
porous matrix was examined by Harfash [45]. Afterward,
Mahajan and Sharma [46], Chand et al. [47] and Yadav [48]
examined the influence of uneven gravitational force on
the nanofluid convective motion. Very recently, Yadav [49]
examined the significance of uneven gravity force and even
throughflow on the start of convection in a Darcian porous
medium and found that these parameters are to suspend the
start of convective activity. The extension with rotation was
also made by Yadav [50].

Due to the important applications of the internal heat source
and the deviation of gravitational force with depth (linear,
parabolic, binomial and exponential) in sedimentary basins,
epeirogenic and orogenic activities of the Earth’s crust, and
crustal structures [51–53], in this article we examine the
internal heat source effect on the onset of convection in a fluid
saturated anisotropic porous medium layer with four types of
gravitational force variation: (a) G(z) = −z, (b) G(z) = −z2,
(c) G(z) = −z3, and (d) G(z) = −(ez

− 1) numerically. The
simulations are performed and explored for the internal heat
source and the gravity deviation parameters on the arrival of
convection via figures and tables.

II. MODELLING OF THE PROBLEM

An infinite parallel layer of fluid saturated anisotropic porous
layer bounded among the limits z = 0 and z = h, and heated

from below is considered. The layer is acted upon by a regular
heat supply Q0 and uneven gravitational field g(z) which
depends on the vertical aspect z and acts in the reverse z-way.
The temperatures at the lower and upper boundaries are
presumed to be θ1 and θ2 (θ2 < θ1), respectively. Under the
assumptions of Darcy’s law, the relevant governing equations
are [25, 54, 55]:

∇ · u = 0, (1)

0 = −∇P − µK̃−1u − ρ0[1 − β(θ − θ0)]g(z)êz, (2)[
(ρc)m

∂
∂τ

+ (ρc) f (u · ∇)
]
θ = ∇ · (k̃m · ∇θ) + Q0. (3)

Here, g(z) = g0[1 + λG(z)] is the changeable gravity, G(z)
is the functional value for the uneven gravity field, θ
is the temperature, g0 is the reference density, λ is the
gravity variation parameter, τ indicates the time, u indicates
the velocity, ρ0 indicates the density of fluid at reference
temperature θ2 = θ0, µ indicates the viscosity, β indicates
the thermal growth coefficient, (ρc) f and (ρc)m denote heat
capacities of the fluid and effective porous matrix, K̃−1 and
k̃m are the converse of the permeability and the thermal
conductivity tensors of the porous medium, respectively and
defined as:

K̃−1 = K−1
x êxêx + K−1

y êyêy + K−1
z êzêz, (4)

k̃m = kmxêxêx + kmyêyêy + kmzêzêz. (5)

In this examination, we have taken the horizontal mechanical
and thermal isotropy, i.e. K−1

x = K−1
y and kmx = kmy. The above

governing Eqs. (1-3) are non-dimensionalized by taking the
subsequent substitution:(x, y, z) = h(x, y, z), θ = θ∆θ + θc, u = kνu/h,
τ = h2τ/kν, P = µn f kνP/Kz,

(6)

where kν = kmz/(ρc), ∆θ = θ1 − θ2. Then, non-dimensional
form of Eqs. (1-3) after reduced the five unknowns u, ν, w, P
and θ to two (w and θ) by operating on Eq. (2) with êz · ∇×∇×

are (after disregarding the tie superscripts for ease):

∇
2
Hw +

1
ξ
∂2w
∂z2 − RD∇

2
Hθ[1 + λG(z)] = 0, (7)

γ
∂θ
∂τ

+ (u · ∇)θ =

(
η∇2

H +
∂2

∂z2

)
θ + Hs. (8)

Here, ∇ = êx∂/∂x + êy∂/∂y + êz∂/∂z, ∇2
H = ∂2/∂x2 +

∂2/∂y2, ξ = Kx/Kz represents the mechanical anisotropy
parameter, RD = ρ0βhKzg0∆θ/(µk/nu) represents the thermal
Rayleigh-Darcy number, Hs = h2Q0/(∆θ(ρc) f kν) represents
the internal heating parameter, η = kmx/kmz represents the
thermal anisotropy parameter, and γ = (ρc)m/(ρc) f represents
the heat capacity ratio. The boundary conditions can be
written as:w = 0, θ = 1, at z = 0,

w = 0, θ = 0, at z = 1.
(9)
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The basic condition is assumed to be quiescent and of the
form: ub = (0, 0, 0), θb = θb(z). Then the conduction status
temperature is obtained as:

θb = 1 − z −
Hs
2

z(z − 1). (10)

III. STABILITY EQUATIONS

We assume the disturbance variables as u = ub + u′ and
θ = θb + θ

′

. Here u′ and θ
′

indicate the perturbed measures
from their basic situation and assumed to be very small. On
inserting the above values of u and θ into Eqs. (7) and (8) and
linearizing, we have the stability equations as:

∇
2
Hw

′

+
1
ξ
∂2w′

∂z2 = RD∇
2
Hθ

′

[1 + λG(z)] = 0, (11)

γ
∂θ

′

∂τ
+ (u

′

· ∇)θb + (ub · ∇)θ
′

=

(
η∇2

H +
∂2

∂z2

)
θ
′

. (12)

We assume the result of the perturbed quantities as [56–63]:

(w
′

, θ
′

) = [w̃(z), θ̃(z)] exp i(κx + χy) + στ, (13)

where κ and χ represent the horizontal wave numbers and σ
represents the expansion rate of volatility. On application of
Eq. (13) into Eqs. (11) and (12), we can write:[1
ξ

D2
− a2

]
w̃ + a2RDθ̃[1 + λG(z)] = 0, (14)

−
dθb

θz
w̃ + [D2

− ηa2
− γσ]θ̃ = 0, (15)

where d/dz ≡ D and a =
√
κ2 + χ2 represents the wave

number. In the perturbation formation, the boundary states
are:

w̃ = θ̃ = 0, at z = 0, 1, (16)

IV. SOLUTION TECHNIQUE

Galerkin procedure is employed to crack the arrangement of
linear Eqs. (14) and (15). So the variables are assumed as:

w̃ =

N∑
k=1

Akw̃k and θ̃ =

N∑
k=1

Bkθ̃k (17)

Here Ak and Bk are constants and, w̃k and θ̃k satisfy the
boundary conditions (Eq. (16)) and assumed as w̃k = θ̃k =
sin kπz. Using Eq. (17) into Eqs. (14) and (15) and applying the
orthogonal characteristics, we have:

C jkAk + D jkBk = 0, E jkAk + F jkBk = σG jkBk. (18)

Here, C jk =
〈Dw̃ jDw̃k

ξ − a2w̃ jw̃k

〉
, D jk =

〈
a2RDw̃ jθ̃k[1 + λG(z)]

〉
,

E jk =
〈
−θ̃ jw̃kDθb

〉
, F jk =

〈
Dθ̃ jDθ̃k − ηa2θ̃ jθ̃k

〉
, G jk =

〈
γθ̃ jθ̃k

〉
,

where 〈YZ〉 =
∫ 1

0 YZ dz.

The collection of Eq. (18) forms a generalized eigenvalue
position and resolved in Matlab using QZ process and EIG
function. The critical thermal Rayleigh-Darcy number RD,c, the
critical wave number ac and the critical value of the frequency
of oscillations σi,c are calculated using the golden search and
Newton’s methods. The nature of the convective motion is
stationary for the taken problem.

V. RESULTS AND DISCUSSION

A numerical investigation has been made to inspect the
influences of the uniform internal heat source and changeable
gravity force on the arrival of instability in an anisotropic
porous matrix. The problem is solved for four types of gravity
field digression: (a) G(z) = −z, (b) G(z) = −z2, (c) G(z) = −z3,
and (d) G(z) = −(ez

− 1) using 6-terms Galerkin method [49].
The conditions for the start of instability is attained in forms of
RD,c and ac for a different variety of Hs,λ, ξ and η. According to
Malashetty and Swamy [16], Shivakumara et al. [18], Mahajan
and Nandal [19], Yadav [29] and Rionero and Straughan [44],
we have considered the values of Hs in the order 102 and the
value of λ in between 0 to 2. The values of ξ and η are not
more than 1.

To prove the precision of the current outcomes, primary test
imitations are made in the nonattendance of internal heat
source and motion in isotropic porous matrix, i.e. Hs = 0,
ξ = η = 1, and outcomes are good agreement with Rionero and
Straughan [44] as shown in Table 1. This proves the accuracy
of the method used.

Table 1. Contrast of the RD,c and the ac with λ in the nonappearance of internal
heat supply and flow in isotropic porous medium, i.e. Hs = 0, ξ = η = 1
for categories (a) G(z) = −z, (b) G(z) = −z2, (c) G(z) = −z3, and (d)
G(z) = −(ez

− 1).

Current Study Rionero and Straughan
G(z) λ RD,c a2

c RD,c a2
c

0.0 39.478 9.872 39.478 9.870
1.0 77.080 10.208 77.020 10.209

(a) 1.5 132.020 12.313 132.020 12.314
1.8 189.908 17.198 189.908 17.198
1.9 212.281 19.475 212.280 19.470
0.0 39.478 9.872 39.478 9.870
0.2 41.832 9.872 41.832 9.874

(b) 0.4 44.455 9.885 44.455 9.887
0.6 47.389 9.916 47.389 9.915
0.8 50.682 9.960 50.682 9.961
1.0 54.390 10.036 54.390 10.034
0.0 39.478 9.872 39.478 9.870
0.1 42.331 9.872 42.331 9.872

(d) 0.2 45.607 9.885 45.607 9.883
0.3 49.398 9.904 49.398 9.904
0.4 53.828 9.941 53.828 9.942
0.5 59.053 10.005 59.053 10.005

Fig. 1 exhibits the disparity of with for categories (a) G(z) = −z,
(b) G(z) = −z2, (c) G(z) = −z3, and (d) G(z) = −(ez

− 1) with
diverse estimates of Hs. The corresponding ac is shown in Fig.
2. The outcomes are also listed in Tables 2 and 3.
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Figure 1. Variation of RD,c with λ for various values of Hs at ξ = 0.8 and η = 0.8 for categories (a) G(z) = −z, (b) G(z) = −z2, (c) G(z) = −z3, and (d)
G(z) = −(ez

− 1).

Table 2. Estimation of RD,c and ac for various values of Hs and λ for flow in isotropic porous medium, i.e. ξ = η = 1 for categories (a) G(z) = −z, (b) G(z) = −z2,
(c) G(z) = −z3, and (d) G(z) = −(ez

− 1).
For case: (a) For case: (b) For case: (c) For case: (d)

Hs λ RD,c a2
c RD,c a2

c RD,c a2
c RD,c a2

c
0.0 39.478 3.142 39.478 3.142 39.478 3.142 39.478 3.142
0.2 43.852 3.142 41.832 3.142 40.894 3.142 45.607 3.144
0.4 49.272 3.145 44.455 3.144 42.398 3.143 53.828 3.153

0 0.6 56.143 3.152 47.389 3.149 43.996 3.146 65.280 3.179
0.8 65.087 3.166 50.682 3.156 45.694 3.150 81.856 3.247
1.0 77.080 3.195 54.390 3.168 47.500 3.155 106.293 3.420
1.2 93.660 3.257 58.576 3.185 49.419 3.163 140.370 3.804
0.0 34.595 3.421 34.595 3.421 34.595 3.421 34.595 3.421
0.2 39.549 3.389 37.735 3.386 36.720 3.390 42.099 3.361
0.4 46.131 3.348 41.473 3.347 39.100 3.357 53.606 3.281

5 0.6 55.281 3.297 45.989 3.304 41.781 3.323 73.234 3.170
0.8 68.809 3.229 51.536 3.256 44.817 3.287 112.789 3.020
1.0 90.645 3.137 58.484 3.203 48.278 3.250 216.826 3.000
1.2 130.905 3.012 67.388 3.144 52.247 3.211 538.607 3.480
0.0 27.016 3.816 27.016 3.816 27.016 3.816 27.016 3.816
0.2 31.257 3.781 29.868 3.775 29.029 3.776 33.656 3.747
0.4 37.062 3.737 33.374 3.727 31.349 3.734 44.522 3.650

10 0.6 45.480 3.677 37.782 3.672 34.049 3.688 65.297 3.501
0.8 58.749 3.594 43.475 3.609 37.225 3.638 118.378 3.280
1.0 82.561 3.472 51.082 3.535 41.005 3.586 355.952 3.636
1.2 136.279 3.289 61.691 3.449 45.567 3.529 1315.364 5.54
0.0 21.446 4.055 21.446 4.055 21.446 4.055 21.446 4.055
0.2 24.925 4.022 23.840 4.014 23.165 4.015 26.966 3.988
0.4 29.739 3.980 26.821 3.967 25.171 3.971 36.233 3.891

15 0.6 36.833 3.922 30.630 3.912 27.537 3.923 54.797 3.739
0.8 48.291 3.839 35.653 3.847 30.367 3.872 107.480 3.516
1.0 69.738 3.715 42.550 3.770 33.801 3.816 387.470 3.334
1.2 122.458 3.527 52.533 3.681 38.043 3.756 1792.891 6.288
0.0 17.627 4.195 17.627 4.195 17.627 4.195 17.627 4.195
0.2 20.531 4.163 19.648 4.155 19.091 4.155 22.266 4.129
0.4 24.572 4.122 22.182 4.108 20.811 4.111 30.155 4.032

20 0.6 30.572 4.064 25.446 4.052 22.854 4.062 46.337 3.877
0.8 40.381 3.982 29.796 3.986 25.319 4.010 94.904 3.647
1.0 59.137 3.854 35.854 3.908 28.341 3.953 378.011 4.691
1.2 107.378 3.657 44.792 3.816 32.118 3.891 2047.480 6.853
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Figure 2. Variation of ac with λ for various values of Hs at ξ = 0.8 and η = 0.8 for categories (a) G(z) = −z, (b) G(z) = −z2, (c) G(z) = −z3, and (d) G(z) = −(ez
−1).

Table 3. Estimation of RD,c and ac for various values of Hs and λ at ξ = 0.8 and η = 0.7 for categories (a) G(z) = −z, (b) G(z) = −z2, (c) G(z) = −z3, and (d)
G(z) = −(ez

− 1).
For case: (a) For case: (b) For case: (c) For case: (d)

Hs λ RD,c a2
c RD,c a2

c RD,c a2
c RD,c a2

c
0.0 36.970 3.632 36.970 3.632 36.970 3.632 36.970 3.632
0.2 41.065 3.632 39.174 3.632 38.296 3.632 42.709 3.634
0.4 46.141 3.636 41.630 3.635 39.704 3.634 50.407 3.645

0 0.6 52.576 3.643 44.377 3.640 41.200 3.637 61.132 3.675
0.8 60.951 3.660 47.461 3.648 42.791 3.641 76.653 3.754
1.0 72.181 3.694 50.934 3.662 44.481 3.647 99.534 3.954
1.2 87.706 3.765 54.853 3.682 46.278 3.656 131.438 4.398
0.0 32.395 3.954 32.395 3.954 33.295 3.954 32.395 3.954
0.2 37.034 3.917 35.336 3.914 34.385 3.918 39.423 3.886
0.4 43.199 3.871 38.837 3.869 36.614 3.881 50.200 3.793

5 0.6 51.768 3.811 43.066 3.819 39.125 3.841 68.584 3.665
0.8 64.438 3.733 48.261 3.764 41.969 3.800 105.634 3.491
1.0 84.891 3.626 54.769 3.702 45.211 3.757 202.849 3.345
1.2 122.602 3.481 63.109 3.635 48.928 3.712 504.493 3.023
0.0 25.297 4.411 25.297 4.411 25.297 4.411 25.297 4.411
0.2 29.268 4.371 27.968 4.364 27.182 4.366 31.515 4.332
0.4 34.704 4.320 31.251 4.309 29.355 4.316 41.691 4.219

10 0.6 42.588 4.251 35.379 4.246 31.883 4.263 61.149 4.047
0.8 55.015 4.155 40.711 4.172 34.858 4.206 110.870 3.791
1.0 77.318 4.013 47.836 4.086 38.399 4.145 333.404 4.203
1.2 127.637 3.802 57.773 3.987 42.672 4.080 1231.986 6.412
0.0 20.081 4.688 20.081 4.688 20.081 4.688 20.081 4.688
0.2 23.338 4.650 22.323 4.641 21.691 4.641 25.250 4.611
0.4 27.847 4.601 25.115 4.586 23.569 4.591 33.929 4.498

15 0.6 34.491 4.534 28.682 4.522 25.785 4.535 51.315 4.322
0.8 45.221 4.438 33.386 4.447 28.436 4.476 100.663 4.064
1.0 65.309 4.294 39.846 4.358 31.652 4.411 362.920 5.011
1.2 114.691 4.077 49.196 4.255 35.625 4.342 1679.313 7.268
0.0 16.504 4.850 16.504 4.850 16.504 4.850 16.504 4.850
0.2 19.224 4.813 18.398 4.803 17.876 4.803 20.849 4.774
0.4 23.008 4.765 20.771 4.749 19.486 4.752 28.237 4.661

20 0.6 28.628 4.699 23.828 4.685 21.400 4.696 43.393 4.482
0.8 37.814 4.603 27.901 4.608 23.708 4.635 88.886 4.215
1.0 55.280 4.455 33.575 4.518 26.539 5.569 354.049 5.422
1.2 100.568 4.227 41.947 4.411 30.076 4.498 1917.791 7.921
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It is found that the gravity variation parameter λ delays
on the onset of convection, while an opposite trend is
noticed with increasing internal heating parameter Hs. This
is because the heat supply of the system increases with
rising Hs which eventually directs to decline in the value
of RD,c. The critical thermal Rayleigh-Darcy number RD,c
supplements upon rising gravity variation parameter λ.
This is because the gravity variation parameter reduces the
strength of gravity force. Consequently, the frustration in the
arrangement returns and this leads to holdup the start of

convection. The size of the convection cells decreased with
Hs while it augmented with λ.

Furthermore, it is seen that the scheme shows more instability
for category (c), while it is maximum stable for category (d).
For big estimates of λ (λ ≥ 1), from Tables 2 and 3, it is
attractive to note that the consequence of Hs is reverse on
RD,c, whereas the effect of λ is reverse on ac.

To see the power of ξ on the stability of the arrangement, RD,c
and ac are sketched in Figs. 3 and 4 as a function of λ for

Figure 3. Variation of RD,c with λ for various values of ξ at Hs = 5 and η = 0.8 for categories (a) G(z) = −z, (b) G(z) = −z2, (c) G(z) = −z3, and (d)
G(z) = −(ez

− 1).

Figure 4. Variation of ac with λ for various values of ξ at Hs = 5 and η = 0.8 for categories (a) G(z) = −z, (b) G(z) = −z2, (c) G(z) = −z3, and (d) G(z) = −(ez
−1).
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diverse values of ξ. The consequences are also summarized
in Table 4. We showed that the outcome of rising ξ hurries
the beginning of convection. This is because the effect of
increasing ξ leads to bigger horizontal permeability which
accelerates the activity of the liquid in the horizontal path
and thus lesser estimates of RD,c are required for the start of
convection with increasing ξ. From Fig. 4, the critical wave
number ac reduces as ξ increased and so its outcome is to
enlarge the dimension of convection cells. This happened
because the low confrontation to horizontal flow also directs

to an expansion of the horizontal wavelength.

The effect of η on the stability of the scheme is completed in
Figs. 5 and 6, and also listed in Table 5.

From these, it is established that RD,c amplifies on amplify
in the rate of the thermal anisotropy parameter η, while
ac decreases on increasing η. This shows that the thermal
anisotropy parameter η has a stabilizing consequence on the
stability of the arrangement. This is for the reason that the
horizontal thermal diffusivity enlarges with η.

Figure 5. Variation of RD,c with λ for various values of η at Hs = 5 and ξ = 0.8 for categories (a) G(z) = −z, (b) G(z) = −z2, (c) G(z) = −z3, and (d)
G(z) = −(ez

− 1).

Figure 6. Variation of ac with λ for various values of η at Hs = 5 and ξ = 0.8 for categories (a) G(z) = −z, (b) G(z) = −z2, (c) G(z) = −z3, and (d) G(z) = −(ez
−1).
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Table 4. Estimation of RD,c and ac for various values of ξ and λ at Hs = 5 and η = 0.8 for categories (a) G(z) = −z, (b) G(z) = −z2, (c) G(z) = −z3, and (d)
G(z) = −(ez

− 1).
For case: (a) For case: (b) For case: (c) For case: (d)

ξ λ RD,c a2
c RD,c a2

c RD,c a2
c RD,c a2

c
0.0 50.340 4.555 50.340 4.555 50.340 4.555 50.340 4.555
0.2 57.565 4.511 54.926 4.508 53.445 4.513 61.293 4.474
0.4 67.172 4.456 60.389 4.455 56.927 4.468 78.109 4.364

0.4 0.6 80.538 4.386 66.992 4.395 60.849 4.421 106.839 4.212
0.8 100.320 4.293 75.109 4.330 65.294 4.372 164.867 4.005
1.0 132.300 4.166 85.285 4.256 70.363 4.321 317.437 3.831
1.2 191.375 3.993 98.336 4.176 76.178 4.269 789.390 4.623
0.0 40.144 4.111 40.144 4.111 40.144 4.111 40.144 4.111
0.2 45.895 4.072 43.791 4.069 42.612 4.073 48.857 4.039
0.4 53.537 4.024 48.132 4.022 45.376 4.034 62.220 3.942

0.6 0.6 64.162 3.961 53.376 3.970 48.490 3.992 85.019 3.808
0.8 79.873 3.879 59.819 3.912 52.018 3.949 130.984 3.627
1.0 105.241 3.768 67.891 3.847 56.038 3.904 251.623 3.475
1.2 152.027 3.617 78.236 3.777 60.649 3.858 625.788 4.180
0.0 34.595 3.824 34.595 3.824 34.595 3.824 34.595 3.824
0.2 39.549 3.789 37.735 3.785 36.720 3.790 42.099 3.758
0.4 46.131 3.744 41.473 3.742 39.100 3.753 53.606 3.668

0.8 0.6 55.281 3.686 45.989 3.694 41.781 3.715 73.234 3.545
0.8 68.809 3.610 51.536 3.640 44.817 3.675 112.789 3.376
1.0 90.645 3.507 58.484 3.581 48.278 3.633 216.565 3.236
1.2 130.905 3.367 67.388 3.515 52.247 3.591 538.607 3.891
0.0 31.035 3.617 31.035 3.617 31.035 3.617 31.035 3.617
0.2 35.480 3.583 33.853 3.581 32.942 3.584 37.769 3.554
0.4 41.386 3.541 37.208 3.540 35.078 3.550 48.096 3.469

1.0 0.6 49.598 3.486 41.261 3.494 37.484 3.514 65.715 3.352
0.8 61.740 3.414 46.239 3.443 40.210 3.476 101.229 3.192
1.0 81.342 3.317 52.477 3.386 43.317 3.436 194.426 3.059
1.2 117.490 3.184 60.471 3.324 46.880 3.396 483.542 3.679

Table 5. Estimation of RD,c and ac for various values of η and λ at Hs = 5 and ξ = 0.8 for categories (a) G(z) = −z, (b) G(z) = −z2, (c) G(z) = −z3, and (d)
G(z) = −(ez

− 1).
For case: (a) For case: (b) For case: (c) For case: (d)

η λ RD,c a2
c RD,c a2

c RD,c a2
c RD,c a2

c
0.0 25.170 4.555 25.170 4.555 25.170 4.555 25.170 4.555
0.2 28.783 4.511 27.463 4.508 26.723 4.513 30.647 4.474
0.4 33.586 4.456 30.195 4.455 28.463 4.468 39.055 4.364

0.4 0.6 40.269 4.386 33.496 4.395 30.425 4.421 53.420 4.212
0.8 50.160 4.293 37.555 4.330 32.647 4.372 82.433 4.005
1.0 66.150 4.166 42.643 4.256 35.181 4.321 158.718 3.831
1.2 95.688 3.993 49.168 4.176 38.089 4.269 394.695 4.623
0.0 30.108 4.111 30.108 4.111 30.108 4.111 30.108 4.111
0.2 34.422 4.072 32.843 4.069 31.959 4.073 36.643 4.039
0.4 40.153 4.024 36.099 4.022 34.032 4.034 46.665 3.942

0.6 0.6 48.122 3.961 40.032 3.970 36.367 3.992 63.765 3.808
0.8 59.905 3.879 44.864 3.912 39.013 3.949 98.238 3.627
1.0 78.931 3.768 50.918 3.847 42.028 3.904 188.717 3.475
1.2 114.020 3.617 58.677 3.777 45.487 3.858 469.341 4.180
0.0 34.595 3.824 34.595 3.824 34.595 3.824 34.595 3.824
0.2 39.549 3.789 37.735 3.785 36.720 3.790 42.099 3.758
0.4 46.131 3.744 41.473 3.742 39.100 3.753 53.606 3.668

0.8 0.6 55.281 3.686 45.989 3.694 41.781 3.715 73.234 3.545
0.8 68.809 3.610 51.536 3.640 44.817 3.675 112.789 3.376
1.0 90.645 3.507 58.484 3.581 48.278 3.633 216.565 3.236
1.2 130.905 3.367 67.388 3.515 52.247 3.591 538.607 3.891
0.0 38.794 3.617 38.794 3.617 38.794 3.617 38.794 3.617
0.2 44.350 3.583 42.316 3.581 41.177 3.584 47.211 3.554
0.4 51.733 3.541 46.510 3.540 43.847 3.550 60.120 3.469

1.0 0.6 61.998 3.486 51.576 3.494 46.855 3.514 82.144 3.352
0.8 77.175 3.414 57.799 3.443 50.263 3.476 126.536 3.192
1.0 101.678 3.317 65.596 3.386 54.146 3.436 243.032 3.059
1.2 146.863 3.184 75.588 3.324 58.600 3.396 604.427 3.679
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VI. SUMMARY

The influence of the consistent internal heat source and the
uneven gravity force on the launch of convective activity in
an anisotropic porous layer was presented numerically. The
investigation was provided for four types of gravity field
digression: (a)G(z) = −z, (b) G(z) = −z2, (c) G(z) = −z3, and
(d) G(z) = −(ez

− 1). The major conclusions of the current
investigation are as follows.

The system was found to be more stable on increasing
η and λ, whereas it was more unstable on increasing ξ
and Hs.

The measurement of the convection cells decreased
on raising the internal heating parameter Hs, while it
increased with ξ, η and λ.

For huge values of gravity variation parameterλ (λ ≥ 1),
the effect of Hs was opposite on RD,c, while the effect of
λ was opposite on ac.

The system shows more instability for category (c), while
it is more stable for category (d).
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