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Population mobility can be studied readily and cheaply using
cellphone data, since people’s mobility can be approximately
mapped into tower-mobile registries. We model people moving in
a grid-like city, where edges of the grid are weighted and paths are
chosen according to overall weights between origin and destination.
Cellphone users leave sparse signals in random nodes of the grid
as they move by, mimicking the type of data collected from the
tower-cellphone interactions. From this noisy data we seek to build
a model of the city, i.e. to predict probabilities of paths from origin
to destination. We focus on the simplest case where users move
along shortest paths (no loops, no going backwards). In this simplied
setting, we are able to infer the underlying weights of the edges (akin
to road transitability) with an inverse statistical mechanic model.

La movilidad de la poblacion se puede estudiar de manera facil
y economica utilizando datos de la telefonia celular, mapeando
la movilidad de las personas en registros de torres moviles. Se
modela el movimiento de las personas en una ciudad en forma
de red cuadrada, donde los nodos y sus conexiones se ponderan
y las rutas se eligen de acuerdo con los pesos generales entre
el origen y el destino. Los usuarios dejan sefiales dispersas en
nodos de la red a medida que avanzan, imitando el tipo de datos
recopilados de las interacciones entre la torre y el teléfono celular.
Utilizando estos datos buscamos construir un modelo de la ciudad,
es decir, predecir probabilidades de caminos desde el origen hasta
el destino. Se estudia el caso donde los usuarios se mueven a lo
largo de los caminos mas cortos (sin lazos, sin retroceder). En esta
configuracion simplificada, podemos inferir los pesos del modelo
(similar a la transitabilidad de la carretera) con un modelo fisico
estadistico inverso.

PACS: Statistical physics and nonlinear dynamics (fisica estadistica y sistemas no lineares), 05.10.-a; computer modeling and simulation
(modelado computacional y simulaciones), 07.05.Tp; Telecomunicactions (telecomunicaciones), 84.40.Ua.

I. INTRODUCTION

Population size, concentration and mobility have been
constantly growing during most of human history, and
especially so in the last 200 years. These changes have
impacted geography, demography and social dynamics in
all too many ways, sometimes at a pace faster than the
adaptability of the systems. Understanding human mobility
patterns at city, country, and international scales is useful for
decision-making related with urban planning, transport and
dealing with infectious diseases [1].

Many different sources have been used to obtain information
about the population mobility, a considerable part of those
are expensive or slow. It is possible to find human mobility
investigations carried out with the information of a national
census [2] or bank notes [3]. Also GPS devices have been
used [4]. GPS data provides accurate measures of position in
outdoors with the drawback of less accuracy because of weak
signals in indoor scenarios and the tendency of users to turn
off the service when isn’t needed due to battery consumption.

The use of telecommunication data allows researchers to
perform these studies in a faster and cheaper way [6].
Large telecommunications companies, private applications,
and network providers collect and store enormous quantities
of data on users of their products and services [6]. A massive
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number of phone calls can be processed and arranged in
records that might include information of the user (usually
anonymized), the position of the device or at least the radio
base to what the user’s device is connected and a time stamp

[7].

The use of telecommunication data opens a new era in the
human mobility studies [1]. This kind of data is now available
to researchers in many countries, even in developing countries
[8]. Due to its vast amount it is possible to improve the results
in comparison with traditional sources as surveys and census
and start new trends in human mobility fields.

In this paper we formalize the problem of understanding city
connections (road usability or transitability) from analyzing
noisy and sparse cellphone data in an artificial city. We
model the city as a weighted 2D grid describing the
connections among parts of the city. Some papers already
have taken graph based approaches. For instance in [10,11]
a transportation network graph is presented to calculate
origin destination matrices using Markov models. Instead,
we map our reconstruction problem, that we call city path
tomography, as an inverse statistical mechanics model. We
develop a procedure to infer weights for edges of the city from
the sparse cellphone data using a gradient descent algorithm.
The main limitation of the proposal is related to the capability
of fast computation of the partition functions that we are able
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to solve for 2D-grids, but remain a complicated issue for more
heteromorphic cities.

Origin-destination (O-D) matrices are the standard
information taken from mobility studies. Not withstanding its
relevance, it provides no clue on how people move between
the given O-D points. City path tomography is somehow a
complementary approach. It aims to produce a probabilistic
model of the usage of different paths between given O-D
points in a city.

The paper is organized as follows: section PATH
TOMOGRAPHY describe the city and its connection to the
artificial paths of users. In section MAX-LIKELIHOOD we
discuss an efficient procedure to infer the weights of the city
based on the incomplete path data. In section RESULTS we
apply this method to some artificial datasets and discuss its
performance. Finally CONCLUSIONS are drawn.

II. PATH TOMOGRAPHY

We consider a simplified version of city as a squared lattice
graph C = (V,E,W), a 2D grid of weighted nodes and/or
edges. Let L be the side of the square city, we label the nodes
in thecityas V =1, ... ,L2, and define paths, from start i to
end h, as a sequence of contiguous edges in the graph:

P = {hO/ hl/ RN hi’l—ll th} Where vi(hi/ hi+1) € E(C) (1)

Furthermore, we will only consider paths that take the traveler
closer to destination at every step, for example if 1, is above/(to
the right) of node hy, then h;,; is always above or to the right
of node h; in the sequence. This also means that if iy and h,
are p steps distant in the y-axis and g steps in the x-axis, then
the total number of nodes visited in every non returning path
isn = p + g, and the amount of such paths is equal to:

N(ho, hy) = (Z) )

In figure 1 is shown an example of this kind of 2D grid using
L=5.

In order to build a statistical model for the trajectories of users
in the city, we define the Hamiltonian (cost function) as the
total weight of a path as follows:

Y Yo

i€P\{ho U b} (ipeP

H®P) = ®)

where the first sum runs over nodes weights while the second
over the links weights.

Be noticed that the first and last node weight wasn’t added
in the Hamiltonian. The probability of a given path between
points h and m in the grid is therefore given by

P(P) = = exp (-C(P)) @

hm
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where the normalization Z;,, ensures that, constrained to the
same origin i and destination m, the set of all non returning
paths P(h, m) has probability 1:

Y, PP =1=Zw= ) exp(-pC(P)).

PeP(h,m) PeP(h,m)

(5)

., ® o e e @

v
L ® L] . »

L

Figure 1. Example of 2D city grid, with nodes and links weighted.

II.1.  Telecom data

For the sake of our model, assume that towers exist at every
node of our grid-like city, and that travelers with a mobile
phone can leave registries of phone-tower communication in
the nodes along their path. However, registry data from these
paths is usually incomplete, and they usually consist on only

but a few of the nodes visited. For instance, paths could look
like

[95, 46,48, 14,42,128,116,117]
[14,61,68]

D= [95,128,112,117]

where each row correspond to a single user, and numbers
correspond to tower ID’s. As you can see from the first and
third lines, the amount of signals left from a trip could vary
widely, even between same origin and destination. We break
down every multi-tower path to its minimum informative
value, which is a set of triplets

[95,46,117]
[95,48,117]
[95, 14, 117]
[95,42,117]
[95,128,117]
[95,116,117]

[14,61,68] } 1

[95,128,117] } 12

[95,112,117]
When a given path has more than one (say k) intermediate
points, each of its triplets is weighted as 1/k to avoid an
statistical bias on the path due to its length.

1/6
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We consider the travelers decisions around the city to be given
by the model (4), and we assume that given a path as (1), every
visited node leaves a signal in the mobile-phone records with
a probability 7 < 1.

The path tomography problem (PTP) that we are interested in
is the following:

Definition [PTP]: given a large set of incomplete paths D of
users in the city, infer the set of weights in W that define model

(4).

Although we can consider node-weighted or edge-weighted
cities, or even both, it can be shown that the probabilistic
model given by (4) is invariant to local transformations of the

type

A

a; —a; + A E

(6)

Vijeaj wij = wij =

This implies that a model with edge-weights is equivalent to
the more general model with both edge and node weights,
since every node weight can be freely set to zero by taking
A; = —a;. However, we will keep the model in full generality.

We will proceed with the node-weight graph first, and
extensions to edge-weighted graphs is immediate. Given that
someone is known to have moved from (non-adjacent) nodes
i to j, the probability that it has passed through node k is given
by:

Zi e P 74
Pli, j) = ————. 7
(kli, j) Z; @)
1. MAX-LIKELIHOOD INFERENCE

The model (4) considers probabilities of different paths
between a given origin O and destination, but does not
take into account (nor care) the frequency of each O — D
pairs. Therefore we build a likelihood not in terms of full
probabilities p(i, k, j) = P(kli, ))P(O = i,D = j), but rather in
terms of the conditionals (7):

LD)= ), logP(Kli ) (8)
(ikj)eD

= Z —’Bﬁlk + log Li + log Zk]‘ - IOg Zi]' (9)
(ikj)eD

If ”S" ng and ni are the number of elements in D of the
type (i, j, *), (+,1, j) and (i, %, j) respectively, then we define the

nij =nd +nt —n and
ij v

D)=y

@ij)

1jj log Zij—p Z Myay (10)
k

where all information from the data is subsumed in the
coefficients n;;. Maximization of the log-likelihood is achieved
when its derivatives with respect to the cost function
parameters is zero.
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Considering that weight a; appears in the exponential of paths
that contain k as an intermediate point, we have:

1JL(D) ( 1 _ )
- =— Y nj|l=s ZpeP%Zi|-m 11
ﬁ aak i;k i sz ik kj k ( )
The gradient respect to the edges weights wy; is:
19JL(D) Z
- = 1;jX
B dwne i— 3K
(l Zﬂg—ﬁ(ﬂﬁwwwmzk,],) (12)
Zij

A fast computation of this gradient, in order to implement
gradient descent method, requires a clever way to evaluate
all the Z;; functions for every pair of possible origin and
destination in the city.

III.1.  Gradient fast computation

As explained in the previous section from a data set and
a graph we aim to find the weights that maximize the
log-likelihood expressed in (8). Then, the log-likelihood
gradient should be computed respect to each type of weight
used, let say nodes (11) and links (12).

The first step from the gradient computation is to extract the
information from the data. This information is condensed in
the values of ;; and m; as explained in the text before (10).

The computation of the gradient in terms of a node weight in
(11) (link weight in (12)), requires a sum over all O — D pairs
that include that node (link) as a passing point of at least one
non returning path from O to D. Considering that the city has
n nodes, the number of O — D pairs grows as 7%, and those
sums are not extremely large. The list of O—D’s corresponding
to every parameter to be extremized, is computed only once
at the beginning.

Starting from a random initialization of the weights we apply
a gradient descent as is described in algorithm 1.

In the algorithm, these quantities are computed at
initialization time before the epoch loop and do not change
over the gradient steps:

Vi,nij and Yimy coefficients computed from data.

possible nodes_OD: The set of  possibles
origin-destination for paths including each node.

possible_links_OD: The set of possibles origin-destination
for paths including each link.

0

Initial values of the weights " and/or a°, chosen

randomly.
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Algorithm 1. Gradient descent for city path tomography
Input: n, m, °, a°
Output; w, a
foreach epoch do
/* Repeat until gradient convergence */
Z = Calc_Part_Func(w', a') /* i: epoch index */
for k in nodes do
temp=0
for i-j in possible_nodes_OD[k] do

temp += %Z,’ke’ﬁ”kzkj /% Summation term in

ij

equation (11) */
end
gradient_a[k] = -1xtemp - m[k]
end
/* At this point log-likelihood gradient respect
to a was computed */
for (k,k’) in links do
temp=0

for i-j in possible_links_ OD(k,k’) do

temp += %Z,‘k e Pt i) 7, /% Summation

ij
term in equation (12) */

end
gradient_w[(k,k")] = temp
end
/* At this point log-likelihood gradient respect

to w was computed */
Update weights: a'*! = 4’ + learning rate X gradient.a
@'l = @' + learning_rate X gradient-w
/* Alternatively, an adaptative gradient
descent algorithm can be use to compute a;q
and i1 */

end

However, changing the weights 2 and w do affect the partition
functions used in the computation, and it is carried by the
function Calc_Part_Func(«’, ') at the beginning every loop of
the gradient descent algorithm. This procedure is described
in algorithm 2.

Updating the partition functions is the time consuming step
in this algorithm. Generally speaking, partition functions are
hard, since they typically imply sums over a combinatorial
number of states in a model. However, the regular grid-like
geometry of the artificial city used and the assumption
that only non-returning paths are considered, allow for an
efficient computation of the partition function. In particular,
the partition function for an origin-destination pair i — j can
be split into the partition functions of a decomposition of the
paths, i — k and k — j for example. This leads to:

Zij=Y Zixe P x 7 (13)

keS

in this equation S is a set of points with the same city block
distance to i and the same city block distance to j. Fig. 2 shows
a possible selection of k values to create a set S and the areas
of the paths which each partition function in the summation
represent.
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This results brings two interesting facts. Considering the set
S with points only one step away from j and a fixed number
of steps away for 7, any value Z;; can be calculated using:

Zii = Zip x e POrror) 4 7, x e Py o) (14)

where ;' and j” are the nodes closer to j in the directions to
approach to i. With this in mind, recursivity can be used. Note
that in (14) Z;y and Z;;» are unknown but can be computed
with the same idea. Using this recursive strategy implies that
due to the calculation of Z;; are computed partition functions
with origin in i and destination each time closer to i. Then, the
calculation of Z;; leads to the computation of every Z;,, where
y is every node in the rectangle delimited by i and j in the city
grid.

Algorithm 2. Procedure to calculate partition functions
procedure Calc_Part Func(w', a’)
Z initialization
foriin V\{[(L-1)xL+1]JL?} do

Zi[(L—l)xL+1] = Cachij(i, (L - 1) XL+1,a, a))

Zy2 = Cale Z;i(i, L%, a, w)
end
Z[(L—I)XL+1]L2 = CalCle((L - 1) xXL+1, Lz, a, CU)

/* and Calc_Z;(i, j,a,w) is described next */

procedure Calc Z;(i, j,a, w)
if Z;j is already in Z then
| return Z;
else
Zi=1
return Z;;
up, down, left, right=calculate_direction(i, j)  /* Each value
is true if i is in that direction respect j */

Zij = up X e Pl +wji) o Calc_Z;(i, j1,a, w)
+ down x e PV x Calc Z;(i, j,, a, w)
+ left x e Pi-*@ii) x Cale_Zy(i, j, a, w)
+ right x e P@-*ii-) x Cale_Z;(i, j, a, @)
Zji = Zij
return Z;;
/* Notice that Z is a data structure and Z;j are

values stored inside Z using the adequate
indexes */

end

This approach is more efficient that obtaining every partition
function following equation (5). Instead of adding over every
possible path the already calculated partition functions are
used to avoid redundant computations. This reduction in
calculations becomes more significant as city side grows. For
instance, if a partition function is calculated for points distant
g = K steps horizontally and p = K steps vertically, the
brute force computation results in ~ 2% from an Stirling’s
approximation of (2). Exploiting the our recursive procedure
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this results in ~ K? operations.

(destination)
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Figure 2. A possible selection of S and description of partition functions
involved.

The final step in the gradient descent is the updating of the
weights in the direction of the gradient in order to maximize
the log likelihood. This can be done with a fixed learning rate
like the stochastic learning rate or with an adaptative step, like
Adam gradient descent algorithm or similar [12]. The gradient
steps are carried up to when a given tolerance is achieved
or a maximum number of loops are reached. Typically the
tolerance is fixed as a small value for the norm of the gradient.

IV. RESULTS

We now show some experiments to test the precision of our
inference methodology with synthetic data from an artificial
city. We will consider a grid-like city of N = L X L nodes
(L = 12) and a link weights extracted from a scaled Gaussian
distribution

wij = ‘ngl- where w?,j ~N(u=0,0%=1).

We do not consider node weights, since they are equivalent to
a gauge transformation of the links.

In artificial city it is possible to take several paths between
each origin and destination. The probability of each path
can be computed using (4) given a set of weights. From
this artificial city we generate a data set of triplets 9. Each
triplets is composed by an origin, an intermediate point and
destination. The length of the set, |D|, corresponds with the
total of triplets. This set of triplets are similar to the data set
of sparse trajectories of mobile phone registers after be split.

At this point, we have a set of paths for each origin destination
pair and the probability to take each path. The probability to
use k in a i — j path is easily obtainable summing over every
i — j path that includes k. Then, we can pick origin-destination
pairs and sample the data according the distribution created.

There are two main parameters to consider in order to perform
a proper evaluation. The first is |D], the length of the set. If
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our procedure is correct, the quality of our inference should
grow towards perfection when the number of samples in D is
large. The second parameter is f3, this value represents the
inverse of the temperature, taking a direct effect over the
shape of the distribution of the paths probabilities. For = 0
(infinite temperature) every path has equal probability with
independence of the values of w and a. With an increase of
B (temperature decrease) it is expected that the path with the
lower Hamiltonian (3) becames more probable relative to the
others with same origin and destination.

Firstly, we explore the influence of |D| over mean square error
of the probabilities generated with the inferred weights. For
that, we set § = 0 and perform the procedure presented in
the previous section to obtain a set of weights from a random
ones.

Once the new weights are inferred we compute:

me=5 Y

(ikj)eD

(pr(xk/))z - (pi(ikj) )2 (15)

where N is the total of ikj in the graphs and py,, and py,,
stands for the real and inferred probability for the trio ikj,
respectively.

Figure 3 shows the results of the logarithm of mean square
error with the grow of |D]. As excepted the error decreases
with an increases of length D.
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Figure 3. Log mean square error for several length of O, in an homogeneous
city, B = 0. True probabilities vs model generated probabilities for particular
values of D in inner plots.

In the inner plots of Fig. 3 it is shown the behavior of p;,,
against py,, for every ikj. Notice that with a bigger number of
trios the distribution of dots became similar to the curve x = y,
as expected. This is shown with more detail in Fig. 4, when
also is considered the case with length of D infinite. Notice,
that to assume this case is needed to set n and m with the value
of its convergence with the increase of |D|.
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Figure 4. True probabilities against probabilities generated using model’'s
parameters.

The analysis done in Fig. 3 can be extended to other values
of B to prove that the same behavior is obtained in a
non-homogeneous city. This is shown in Fig. 5, where using
the same set of discrete |D| the values of the logarithm of mse
are plotted from different values of . Particularly, f =0, =1,
B=2.6=4and b5 =8.
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Figure 5. Mean square error varying length of D, using different values of g.

V. CONCLUSIONS

We introduce the City Path Tomography problem and show
that it can be solved in a very simplified toy model of phone

users moving in a grid-like city. The likelihood of the observed
data is maximized in an efficient way, thanks, mostly to the
simplicity of the city and the assumption of users moving
along non returning paths. As expected, the inference is more
accurate as the amount of data grows.

The success of this methodology acts as a proof of concept.
It is a first step to attempt the more challenging situation of
realistic cities and travelers. The challenge in that case is two
fold: first describe a model that is consistent with real human
behavior in a city, and second, solve it (probably resorting to
approximate stat mech methods).
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