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B. A. Pérez-Fernándeza,b†, R. Muleta,c

a) Group of Complex Systems and Statistical Physics, Physics Faculty, University of Havana, San Lázaro and L, 10400 La Habana, Cuba
b) Department of Applied Physics, Physics Faculty, University of Havana, San Lázaro and L, 10400 La Habana, Cuba; barbara.perezf@fisica.uh.cu†

c) Department of Theoretical Physics, Physics Faculty, University of Havana, San Lázaro and L, 10400 La Habana, Cuba
† autor para la correspondencia

Recibido 8/6/2021; Aceptado 20/9/2021

Due to its potential impact on the biotech industry, continuous cell
cultures have attracted great interest in recent years. However, this
type of culture remains expensive and, in some aspects, inefficient.
They are often optimized based on the empirical experience of
the personnel involved in their development and maintenance, but
this is time-consuming and leads to material and nutrients waste
that could be reduced with a deeper understanding of the process.
We propose an optimization method for continuous cell culture
applying techniques from the theory of Optimum Control. As a proof
of concept, we apply this method in a simple metabolic network
that consumes glucose and secretes lactate. We predict the most
appropriate behavior for the dilution rate that maximizes the cell
density achieved in the steady state of the system.

Los cultivos celulares continuos han alcanzado un potencial impacto
en la industria biotecnológica, lo que ha despertado un gran interés
en la comunidad cientı́fica en los últimos años. Sin embargo, este
tipo de cultivo sigue siendo caro y, en algunos aspectos, ineficiente.
Comúnmente, el proceso de producción es optimizado en base a
la experiencia empı́rica del personal involucrado en su desarrollo
y mantenimiento, lo cual requiere mucho tiempo y conduce a
desperdicios de materiales y nutrientes que podrı́an reducirse con
una comprensión más profunda del proceso. Nosotros proponemos
un método de optimización para cultivo celular continuo utilizando
Teorı́a de Control. Como prueba de concepto, aplicamos este
método a una red metabólica simple que consume glucosa y secreta
lactato. Predecimos el comportamiento de la tasa de dilución que
maximiza la densidad celular alcanzada en el estado estacionario
del sistema.

PACS: Optimization, optimización 02,70. − c; theory optimal control, teorı́a de control 0,2,30.Yy; metabolism, metabolismo 87,17. − d

I. INTRODUCTION

Mammalian cell cultures are at the core of the productions
of many therapeutic proteins and viral vaccines [1]. This has
made it critical for pharmaceutical companies to improve their
stability and efficiency. All the more reason when it comes to
complex production systems such as continuous processes.
In this case, fresh medium is continually added, while the
culture liquid containing the leftover nutrients, metabolic end
products, and toxic by-products is continuously removed to
maintain the culture volume.

This type of large-scale production mode has attracted great
interest in recent years. [2]. However, despite enormous
advances in understanding and manipulation, continuous
bioprocessing remains time consuming, expensive, and in
some respects even an inefficient process [3].

In principle, we can distinguish four different ways to improve
this process [4]: the selection of the strain, the formulation of
a culture medium, the selection of critical parameters and the
definition of the optimal protocol.

The strain is usually selected considering its resistance to
changes in the environmental conditions of the culture and
the possibility of manipulating them to obtain the products of
interest to the industry [5]. The formulation of the culture
media is even more delicate. To lower costs, the industry
would like a medium that is as cheap as possible, but at the

same time it should be rich enough in nutrients to guarantee
maximum growth [6] or protein production in the culture.
On the other hand, setting parameters such as temperature,
pH and oxygen concentration, is a very complex process. This
generally requires prior knowledge of the values used for
similar strains, or alternatively it is necessary to establish it
after numerous experiments, implying a waste of time and
resources [7].

But setting the values of specific parametes is not the
only problem, the biggest difficulty is finding an efficient
time-dependent protocol for each parameter. For example,
in a perfusion system, controlling the dilution rate at the
exponential stage of cell growth significantly influences the
growth rate and the cell density achieved at steady state [8,9].

In this work, we will concentrate our efforts in this last
problem: what is the proper protocol of dilution rate that
maximizes the cell density of the system at the steady state?
As a proof of concept, to answer this question, we will study
a toy model of cellular metabolism exploiting results from the
Theory of Optimum Control.

Previously, a similar theoretical approach was applied to this
problem, using empirical kinetic models for the reactions [10].
For example, the Monod equations that correlate cell specific
growth rate with extracellular substrate concentration by two
kinetic parameters [11].
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Indeed, the Monod equation is one of the best known
processes that describe kinetic reactions in the cell. It has
a simple formulation and has been extensively validated
[12, 13]. However, several studies have shown that growth
kinetic constants are actually a function of culture history and
composition of the cell community [14, 15]. On the other, for
genomic-scale cell lines, it is almost impossible to know all
the kinetic parameters that describe the cell growth rate. In
particular, for complex lines, such as mammalian cells, it is
difficult to know the real form of the kinetic functions.

To avoid these difficulties, we will substitute the use of
kinetic equations by the standard assumptions of Flux Balance
Analysis (FBA). FBA allows treatment the cell metabolism in
steady state, does not require the use of kinetic parameters,
and has been shown to be a good approximation to estimate
the cell growth rate [16].

The rest of the work is organized as follows: In the next
section, we will present the standard equations that describe
the dynamics of the chemostat and a toy model that describe
the metabolism of the cell. There, we will show what is
the behavior of said system under standard protocols, also
referring to the relevant literature where the reader can seek a
more in-depth and detailed analysis of the model. We proceed
by providing a brief review of the Theory of Optimum Control
and in particular of the technique used in our work. Then, we
show and discuss the optimal protocol to be used in our model.
Finally, we present the conclusions of our work and suggest
possible extensions to our approach.

II. THE MODEL

This section is divided into two parts. We first describe the
equations that define the behavior of the perfusion system.
Essentially, how the number of cells and the concentration
of metabolites in the culture change depending on the
external parameters of the problem. Next, we present the Toy
model mimicking the metabolism of cells. We will remark
the connection between these two seemingly disconnected
systems of equations.

II.1. The perfusion system

A cell culture produced in continuous mode can be
represented schematically as in figure 1. The fundamental
dynamic equations that describe this system are [17]:

dX
dt

= (µ − φD)X X(0) = X0 (1)

dsi

dt
= −uiX − (si − ci)D si(0) = si0 (2)

where X denotes the cell density in the bioreactor (units:
gDW/L), µ the effective cell growth rate (units: 1/h), and
the perfusion coefficient, φ (unit-less), which characterizes
the fraction of cells that escape from the culture through a

cell-retention device.

Figura 1. Cells are growing in a bioreactor that is continuously fed fresh
medium at a constant flux. While an equivalent flux transports metabolic end
products and toxic by-products out of the tank, keeping the culture volume
constant. Notation: substrate concentrations in the medium (ci), cell density
and metabolite concentrations in the culture (X, si), dilution rate (D = F/V,
where F is the influx/outflux and V the culture volume).

Equation (1) describes a process in which the number of cells
grows at a rate of µ (growth rate), and is removed from
the culture at a rate of φD. On the other hand, equation (2)
describes a process in which metabolite i is removed/injected
at a rate (si − ci)D while ui denotes the specific uptake of
metabolite i (units: mM) from the cells. The variable si denotes
the concentration of metabolite i in the culture (units: mM),
while ci is the concentration of metabolite i in the media
formulation. In what follows, i will take on two values that
describe glucose consumption and lactate production.

Here two things must be taken into account, first that this
set of equations depends on the actual metabolism of the
cells through ui and µ and that the external parameters that
control the culture are the dilution rate, D (units: 1/h) and the
perfusion coefficient φ.

II.2. A Toy Metabolic Network

We study a simple metabolic network first introduced by A.
Vazquez et al. [18] to explain the Warburg effect and later
exploited by Fernández de Cossio and collaborators [19] to
study the effects of toxic by-products of the metabolism,
the heterogeneity in a chemostat [20] and the bistability
of a Warburg-like phenotype due to microenvioronmental
cooperation [21]. A diagram of the network is shown in figure
2.

To make the discussion a bit more realistic, we assume that
the nutrient consumed is glucose, cg, and the waste product
is lactate, sl, a well-recognized toxic waste in mammalian cell
cultures. The cell can consume cg from the medium at a rate
ug > 0, and secrete lactate at a rate ul < 0. The stoichiometric
relationships for this model are summarized in equations (3)
and (4) from the conservation of metabolite P and the mass
balance constraint of the cell:

ug + ul − r = 0 (3)
NFug + NRr − e − yZ = 0 (4)

where NF and NR define the contribution of these reactions
to the growth rate of biomass of the cell Z. The parameter
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e denotes an energetic maintenance demand, modeled as a
constant drain of ATP [17,22]. The term y represents the units
of metabolite consumed, in this case it is glucose, required per
unit of biomass produced [23, 24].

Figura 2. A primary nutrient cg is consumed by the cell at a rate ug > 0. This is
processed and the intermediary P is obtained, generating NF units of energy
for each unit of cg consumed. P can be excreted as a waste product sl at a
rate (−ul 6 0) (fermentation), or it can be completely oxidized at a rate of r > 0
(respiration) generating NR additional energy units (NR � NF). Respiration is
valid for r 6 rmax.

We also introduce the role of the enzymatic costs [17, 19].
Since this cost is higher in the respiration reaction than during
fermentation, we limit, for simplicity, only the flux r:

r 6 rm = 0,45 mmol/gDW/h (5)

Now, since metabolite concentrations in the culture cannot
be negative (si ≥ 0), Equation(2) in steady state implies that
ui ≤ ciD/X. In our setting:

ug ≤Min(V, cgD/X) (6)

where V is a constant maximum uptake rate determined
by molecular details of the transport process. This bound
(Equation (6)) connects the variables in the chemostat with
the actual metabolism of the cell.

Moreover, due to the enzymatic cost of respiration shown in
the Equations (3) and (5), the flux r takes the form

r ≤Min(ug, rm) (7)

Therefore, substituting the expressions (6) and (7) in (3), we
obtain:

ul = r − ug = Min(ug, rm) − ug (8)
= Min(Min(V, cgD/X), rm) −Min(V, cgD/X) (9)

Notice that he study of cell death has been an important area
in biomedical research for several years. Many industrially
important cell lines have been shown to die by apoptosis
(see, for example, the original work of Al-Rubeai et al. [25]).
This phenomenon has been observed mainly at the end of
the batch culture, and it is due to the deprivation of nutrients
such as glucose, glutamine, growth factors and oxygen or due

to the presence of toxic metabolites such as ammonia and
lactate [26–28].

Nevertheless, in batch feeding, perfusion, and chemostat
cultures, the situation is more complex, as nutrients are
constantly being replenished. In these type of cultures, cells
can undergo apoptosis in response to various environmental
stressors, such as high osmolality, pH fluctuations, oxygen
gradients, and deprivation due to insufficient mixing at
high cell densities [26, 29–33]. In addition, exposure to
increasing hydrodynamic forces from liquid surface bubble
burst, gas bubbling, liquid flow or gas entrainment and
energy dissipation from the impeller stream can induce
apoptosis [31, 34]. Consequently, it is very difficult to obtain
a mathematical expression that regulates all these factors
involved in continuous or semi-continuous cultures. With
more reason in a metabolic model as simple as ours. In
particular, in our work we do not take into account bioreactor
damage, osmolality, pH fluctuations or oxygen gradients;
therefore, we do not take into account cell death due to
apoptosis.

However, more generally, we can consider cell death due
to the accumulation of toxic by-products, which affects the
growth rate. Lactate and ammonia have been shown to inhibit
and destroy cells [35–37]. Specifically, the effects of lactate, a
metabolite used in our model as sl, are incorporated in the
form of growth inhibition and increased death rate as follows:

µ = Z − τsl (10)

where µ is the effective cell growth, Z represents the biomass
production and τ is the death rate.

In short, the internal metabolism of the cell is defined by
stoichiometric equations (3) and (4), subject to the bounds
(6), (7) and (9). The effective growth rate is given by (10).

In practice, we used: NF = 2, NR = 38 as the characteristic
ATP yields of glycolysis and respiration respectively [38],
e = 1,0625 mmol/gDW/h typical of mammalian cells [22],
y = 348 mmol/gDW is within the range of duplication rates
in mammalian cells [36, 39], V = 0,5 mmol/gDW/h is the
maximum uptake of glucose measured for HeLa cells [40]
and the toxicity of waste is τ = 0,0022 h−1mM−1 obtained
from linearizing the death rate dependence on lactate in a
mammalian cell culture reported by S. Dhir et al. [36].

II.3. Stability of the System

To determine the stability of a system of coupled differential
equations, on must analyze the Jacobian eigenvalues of the
system. If the real parts are all negative the state is stable, but
if at least one eigenvalue has a positive real part, the state is
unstable.

Our system of equations (1) and (2) was previously presented
by Cossio et al. in the report [17]. In that work, the authors
carried out a detailed and very general study of the stability of
the system of equations. For the particular set of parameters
used in our work, the system is always stable.
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II.4. The General Picture

To get a clear picture of what to expect from the model
presented above, we summarize some general results here.
A relevant question is the following: Given a dilution rate D
set by the experimenter, how do cell density and metabolite
concentration evolve over time?

Figura 3. Behavior of cell density and concentrations of nutrients, glucose
and lactate, in the culture as a function of time for three different dilution rates
(1,0 days−1, 1,5 days−1 and 2,0 days−1). Initial condition, X0 = 0,5 gDW/mL,
and cg0 = 10 mM.

The answer to this question can be obtained by means of the
numerical solution of the dynamic system (Equations (1)-(2))
with the addition of the FBA hypothesis for the metabolism
of the cell, for different values of D. As an example, we show
in figure 3, for three different values of D, how the cell density
and the concentrations of the glucose and lactate metabolites
vary as a function of time.

As can be seen in the figure 3, the dilution rate affects both, the
cell density at the steady state and the time required to reach
that steady state. Of Course, it also influences the rate at which
metabolites are delivered to the culture, and thus changes the

concentrations of metabolites in the vessel, including toxic
ones like lactate.

To summarize the previous image, in figure 4 we present,
as a function of D, the concentration of cells reached at the
steady state. Notice, that X first increases, essentially, because
increasing D increases the rate at which nutrients are delivered
in the system and this facilitates the growth of the culture.
However, if D is too large, (D > 2 d−1) the removal of the cells
from the system ocurrs so rapidly that the culture is essentially
washed out and X is drastically decreased. In this regime, cells
just don’t growth fast enough.

Figura 4. Expected cell density at a stable state for different constant flux of
dilution rates.

In the rest of the work, our task is to suggest a suitable protocol
for the experimenters in which, controlling and changing D
the number of cells at steady state is maximized as quickly as
possible. But, before presenting this protocol, we are going to
introduce below some concepts and techniques of the Optimal
Control Theory.

III. OPTIMAL CONTROL PROBLEM

In Optimal Control Theory [41], you usually solve problems
in which you need to maximize a utility function. In this case,
it is the cell density X. This maximization occurs through the
use of one or more variables from the problem, usually call
control parameters. In our case, the control parameter will be
the dilution rate D. The difficulty arises because the function
to be maximized is constrained to following specific dynamic
equations [41], as in our case equations (1) and (2).

Let us, put this in more explicit form. We want to find the
optimal control parameter u(t) = D(t) that maximizes X(t f ),
where t f is an unknown final time of the experiment. Similar
to the Lagrangian Mechanics formalism [42], this is of course
equivalent to minimizing the following objective function:

F = −X(t f ) (11)

subject to the equations (1) and (2), that for simplicity we
rewrite in vectorial form

ẏ = g[y(t),u(t)] y(0) = y0 (12)
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The above problem is equivalent to minimizing the
augmented functional

J =

t f∫
0

[H − λTẏ]dt =

t f∫
0

[F + λT(−ẏ + g)]dt (13)

subject to y(0) = y0; where H = F + λTg is the Hamiltonian,
λ the Lagrange multipliers and H − λTẏ in the language of
Theoretical Mechanics is the Lagrangian L of the problem.

It is easy to show that the necessary conditions for the
minimum of F are: [41]

ẏ = g, y(0) = y0 State equations

λ̇ = −Hy, λ(tf) = 0 Costate equations

Hu = 0

H(t f ) = 0

III.1. Improvements in u and t f to reduce J

To implement the improvement strategy numerically [41],
we split the time interval [0, t f ] into N subintervals of equal
length and use numerical integration (for example, composite
Simpson’s 1/3 Rule for even number of subintervals) to
calculate δJ as well as J. Thus, J is rendered into a function
dependent on the vector of optimization parameters

p ≡ [u[t0] u[t1] . . . u(tN) t f ]T (14)

where t0, t1, . . ., tN form the time-grid of (N + 1) equispaced
grid points in the time interval [0, t f ].

However, there is a complication with this approach. An
improvement in t f changes the time grid, thereby requiring
the estimation of controls and states on the new time grid
for the next round of improvements. We avoid this situation
by linearly transforming the independent variable t in the
variable interval [0, t f ] to a new independent variable σ in the
fixed interval [0, 1].

Besides, this improvement is ideal in our problem because
we don’t know the value of the final time t f . We need to
minimize, F, but both t f and X(t f ) are free. We introduce a new
independent variable σ ∈ [0, 1] through the linear relation

σ = at + b (15)

where a and b are some unknown constants.

Thus,

σ =
t
t f

dσ
dt

=
1
t f

and
dyi

dt
=

dyi

dσ
dσ
dt

=
dyi

dσ
1
t f

(16)

Substituting, respectively, the initial and final values of σ and
t in the above equation, we obtain

0 = b and 1 = at f + b ⇒ a =
1
t f

(17)

Based on the these relations, the objective of the optimal
control problem is to find the control u and the final time
t f that minimize the functional (Eq.(13))

J =

t f∫
0

L(y(t),u(t))
dσ
dσ

dt =

1∫
0

t f L(y(t),u(t))dσ (18)

We compute the integral in the above equation numerically
over the fixed σ-interval [0, 1] using composite Simpson’s
1/3 Rule (see the Appendix). The interval is split into N
subintervals of equal length using (N + 1) equi-spaced grid
points.

σ0 = 0, σ1, σ2, . . . , σN = 1 (19)

We initialize the control parameter u with N arbitrary values
and t f = 1,0. Then, we integrate state equations (ẏ = g)
using the initial conditions and the control function values,
and save the values of state variables at each grid point.
After, we evaluate the objective functional (18) using the
values of control functions and state variables and we save
the objective functional value. Finally, we integrate costate
equations (λ̇ = −Hy) using the final conditions, the control
function values, and the saved values of the state variables. It
is also necessary to save the values of costate variables at each
grid point.

Now, we improve u and t f using the gradient of the objective
functional as follows:

uk+1
i = uk

i − εH
k
u,i, i = 0, 1, . . . ,N (20)

tk+1
f = tk

f − εJk
t f

(21)

where ε ≡ ε0/ ‖ ∆J ‖, and ε0 is some positive real number.

This minimization procedure is known as the Gradient
Algorithm. It affords a simple and effective way to solve a
wide range of optimal control problems [41].

III.2. Penalty function method

On the top of the previous discussion, we have to consider
also that in some cases control parameters most fulfill specific
restrictions. For example, in our case that:

D ≥ D0 (22)

A constraint that can be generally expressed as

f (y,u) = −D + D0 ≤ 0

To solve this additional restriction problem, we use the Penalty
Function Method [41]: This is a simple method for solving an
optimal control problem with inequality constraints. As the
name suggests, the method penalizes the objective functional
in proportion to the violation of the constraints, which are
not enforced directly. A constrained problem is then solved
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using successive applications of an optimization method
with increasing penalties for these constraint violations. This
strategy gradually leads to the solution, which satisfies the
inequality constraints.

The problem is equivalent to minimizing the augmented
functional

J =

t f∫
0

[F + λT(−ẏ + g) + µT
λ f ]dt =

t f∫
0

(L − λTẏ)dt (23)

where, in general, µλ are time dependent multipliers
associated with the algebraic constraints f and the Lagrangian
is

L = F + λTg + µT
λ f = H + µT

λ f

The necessary conditions for the minimum of J are

ẏ = g y(0) = y0 λ̇ = −Ly λ(t f ) = 0

f ≤ 0 Lu = 0 L(t f ) = 0 µλ ≥ 0 µT
λLµλ = 0

To handle the inequalities, the penalty function method is
slightly modified as follows. At any time, the multipliers
corresponding to the inequalities are prescribed as

µλ = Wh (24)

where W is an l× l diagonal weighting matrix with all positive
diagonal elements and h is

h =


0 if f (t) ≤ 0

1 if f (t) > 0

Thus, the augmented objective functional

J =

t f∫
0

[F + λT(−ẏ + g) + hW f ]dt

has the penalty function hW f , which is positive and enlarges
J whenever any inequality is violated. The computational
algorithm to find the minimum is in the Appendix.

IV. RESULTS AND DISCUSSION

IV.0.1. Solution of Optimal Control Problem

First, we describe how the above formalism translates into our
specific problem. As we already mentioned, the equivalent
problem in the fixed σ-interval [0, 1] is to minimize

F = −X(t f ) (25)

The necessary conditions for the minimum in our problem are

1. ẏ = g, y(0) = y0

The state equations are

dX
dσ

= t f (µ − φD)X; X(0) = X0

dsg

dσ
= t f (−ugX − (sg − cg)D); sg(0) = sg0

dsl

dσ
= t f (−ulX − slD); sl(0) = 0

The Hamiltonian is then given by

H = t f [−X + λx(µ − φD)X + · · ·

+λg(−ugX − (sg − cg)D) + λl(−ulX − slD)]

The Lagrangian is

L(σ) = H + [ f (yi,ui)]TW f (yi,ui);
i = 0, 1, . . . ,N

where

f (y,u) = −D + D0 ≤ 0

and W = αr1. Then

L(σ) = t f [−X + λx(µ − φD)X + · · ·

+λg(−ugX − (sg − cg)D) + · · ·

+λl(−ulX − slD)] + αr(−D + D0)2

2. dλ
dσ = −Ly, λ(1) = 0

3. Lu = 0

In the Appendix, there is a detailed description of these
expressions and their numerical implementations.

The results of our numerical simulations are presented in
figure 5, where we compare the output of our optimization
with the ones obtained using fixed dilution rates (see also
figure 3).

We can see that using an appropriate dilution rate protocol it
is possible to achieve a higher cell density than that obtained
using a constant dilution rate value, and also to reach this
value more quickly. Note that through this protocol also the
concentration of lactate, a toxic by-product of metabolism, is
significantly reduced in the culture. We want to point out that
predicting the optimal protocol to follow based on experience
is not trivial and requires a high expenditure of time and
resources.

As can be seen in figure 5, the graph indicating the optimal
dilution protocol is very noisy. This noise is an effect of finite
size due to the finite number N of partitions used to describe
the interval σ = [0, 1]. This can be solved by increasing N, but
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the computational cost would be higher.

Figura 5. Dilution rate, cell density, and concentrations of glucose and lactate
in the culture in time. The blue line shows the results of the Optimal Control
Problem, and the others lines are shown above in figure 4. In all graphs, we
use as initial conditions X0 = 0,5 gDW/mL, cg0 = 10 mM; and φ = 0,5. In the
optimization, we use the follow parameters: N = 500, ε = 0,1, and 30 × 106

iterations.

Therefore, to provide experimenters with a D(t) curve without
this noise, we performed a simple interpolation to describe
the protocol for D. We use a linear fit for the first part of the
protocol, and a constant for the second. In practice, D(t) = 0,60
days−1 +0,02 days−2t during the first 3 days of the process and
D = 2,15 days−1 for the rest of the time (red dashed line in
figure 6). To test the efficiency of the protocol, we compareed

the results of using our interpolated function with two similar
protocols for the dilution rate D. The results are summarized
in figure 6. We show that if the dilution increases too slowly,
the steady state will be reached later in time. On the contrary,
if it is increased too quickly, it will take much longer to reach
the steady state, but in the process it will produce much more
toxic by-products.

Figura 6. Comparison of cell density and glucose and lactate concentrations
using two dilution rates somewhat different from the optimal obtained (blue
line).
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V. CONCLUSIONS

In this work, we have modeled a continuous cell culture
using a set of non-linear equations. Our model describes the
dynamics of the cell density as a combination of intracellular
properties (cell growth) and external parameters (perfusion
coefficient and dilution) in the chemostat. It also describes
the dynamics of metabolite concentrations in the culture as a
balance between cell consumption/secretion and the dilution
rate.

As a proof of concept, we study a simple metabolic network
and formulated the cell growth rate through the FBA
algorithm. In this way, we avoid the need to use kinetic
parameters to describe metabolic reactions. These parameters
are usually unknown, or variable over time.

For the studied model, exploiting Optimal Control Theory
techniques, including the dynamic penalty method, we were
able to predict an optimal protocol for the dilution rate as a
function of time. The use of this protocol maximizes the cell
density at the steady state, minimizes the time in which this
steady state is reached, and also minimizes the secretion of
lactate in the culture.

Although these results can no longer be translated already
into experimental systems, they support the feasibility of
the approach for more complex and realistic problems. We
are sure that the extension of this technique to the study of
Genome Scale Metabolic Networks could be of great relevance
in the biotechnological industry. Work is being done in this
direction.
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VI. APPENDICES

VI.1. Computational Algorithm

The objective in this problem is to find the control u that
minimizes

t f∫
0

F[y(t),u(t)]dt

subject

ẏ = g[y(t),u(t)], y(0) = y0

and l algebraic equality constraints

f (y,u) = 0

The equivalent problem is to find the minimum of the
augmented functional

J =

t f∫
0

[F + λT(−ẏ + g) + µT
λ f ]dt =

t f∫
0

(L − λTẏ)dt (26)

where, in general, µλ are time dependent multipliers
associated with the algebraic constraints f .

The necessary conditions for the minimum of J are

ẏ = g y(0) = y0 λ̇ = −Ly λ(t f ) = 0
f ≤ 0 Lu = 0 L(t f ) = 0

At any time, the multipliers corresponding to the inequalities
are prescribed as

µλ = Wh (27)

where W is an l× l diagonal weighting matrix with all positive
diagonal elements and h is

h =


0 if f (t) ≤ 0

1 if f (t) > 0

To determine u and t f at the minimum [41],

1. Initialize the outer counter r = 0. Choose a real number
α > 1.

2. Set the l × l diagonal weighting matrix W = αr1, where
1 is the l × l identity matrix.

3. Set the iteration counter k = 0. Assume tk = 1,0 and
obtain the fixed σ-grid of (N +1) equi-spaced grid points

σ0 = 0, σ1, σ2, . . . , σN = 1 (28)

At each grid point, assume control function values as
follows:

uk
i ≡ uk(σi); i = 0, 1, . . . ,N (29)

4. Integrate state equations forward from σ = 0 to 1 using
the initial conditions and the control function values uk

i
, i = 0, 1, . . . ,N. Save the values of state variables at the
grid points.

5. Evaluate the objective functional using the controls uk
i

and the state variables yk
i . Using composite Simpson’s

1/3 Rule, the objective functional value is given by

J =
1

3N

A0 + 4
N∑

1,3,5,...

Ai + 2
N∑

2,4,6,...

Ai + AN

 (30)

where Ai ≡ t f F(yi,ui) + [ f (yi,ui)]TW f (yi,ui); i =
0, 1, . . . ,N.
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6. Check the improvement in F for k > 0. Given a tolerable
error ε1 > 0, if

| Fk
− Fk−1

|< ε1 (31)

7. Integrate costate equations backward from σ = 1 to 0
using the final conditions, the controls uk

i , and the state
variables yk

i . Save the values of costate variables at the
grid points.

8. Evaluate the gradient of J k by calculating the partial
derivatives

Hk
u,i ≡ Hk

u(σi) = Hu(yk
i ,u

k
i , λ

k
i ); i = 0, 1, . . . ,N (32)

where

Hk
i ≡ tk

f [F(yk
i ,u

k
i , λ

k
i ) + λT

i g(yk
i ,u

k
i , λ

k
i )]; i = 0, 1, 2, . . . ,N

(33)

and

Jk
t f

=

1∫
0

Hk

tk
f

dσ =
1

3Ntk
f

Hk
0 + 4

N∑
1,3,5,...

Hk
i + 2

N∑
2,4,6,...

Hk
i + Hk

N


(34)

Check the magnitude of the gradient. Given a small
positive real number ε2, if the norm of the gradient√√√ N∑

i=0

[Hu(yk
i ,u

k
i , λ

k
i )]2 + [Jk

tk
f

]2 < ε2 (35)

then take these results.

9. Improve control functions and the final time by
calculating

uk+1
i = uk

i − εH
k
u,i, i = 0, 1, . . . ,N (36)

tk+1
f = tk

f − εJk
t f

(37)

where ε ≡ ε0/ ‖ ∆J ‖, ε0 is some positive real number
and

∇J ≡ [Lu(σ0) Lu(σ1) . . . Lu(σN) Jt f ]
T (38)

where

L(σi) = t f [F(yi,ui) + λT
i g(yi,ui)] + [ f (yi,ui)]TW f (yi,ui);

i = 0, 1, . . . ,N
(39)

10. When the gradient algorithm converges in, say, k
iterations, save the state, the control, and the final time,

yk
i , uk

i ; i = 0, 1, . . . ,N; and tk
f

11. Increment the counter r by one and assign

yk
i → yr

i , uk
i → ur

i ; hk
i → hr

i ; i = 0, 1, . . . ,N; and tk
f → tr

f

12. Given a positive real number ε3 close to zero, if the error

E =

N∑
i=0

[hr
i ]

T f (yr
i ,u

r
i ) > ε3 (40)

then some constraints are violated. Therefore, repeat the
algorithm.

Otherwise, the constraints f ≤ 0 are satisfied, and the
values

yr
i , ur

i ; i = 0, 1, . . . ,N; and tr
f

correspond to the minimum.

VI.2. Solution of Optimal Control Problem

VI.2.1. Toy model

Dynamic Problem

The Lagrangian is given by

L(σ) =t f [−X + λx(µ − φD)X + λg(−ugX − (sg − cg)D)

+ λl(−ulX − slD)] + αr[(−D + D0)2 + φ2 + (φ − 1)2]
(41)

The following conditions are necessary:

dλ
dσ = −Ly, λ(1) = 0

The costate equations are

dλx

dσ
= −LX = t f [1 − λx(µ − φD +

∂µ

∂X
X) +

λg(ug +
∂ug

∂X
X) + λl(ul +

∂ul

∂X
X)], λx(1) = 0

dλg

dσ
= −Lsg = t fλgD, λg(1) = 0

dλl

dσ
= −Lsl = t f (−λxX

∂µ

∂sl
+ λlD), λl(1) = 0

where

∂µ

∂X
=


−

1
y

cgD
X2 (NF + NR) if cgD/X < rm

−
1
y

cgD
X2 NF if rm ≤ cgD/X ≤ V

0 if V < cgD/X

∂µ

∂sl
= −τ

and

∂ug

∂X
=


−

cgD
X2 if V ≥ cgD/X

0 if V < cgD/X
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∂ul

∂X
=


0 if cgD/X < rm

cgD
X2 if rm ≤ cgD/X ≤ V

0 if V < cgD/X

Lu = 0

∂L
∂D

= t f

{
X
[
λx(

∂µ

∂D
− φ) − λg

∂ug

∂D
− λl

∂ul

∂D

]}
−t f [λg(sg − cg) − λlsg − 2αr(−D + D0)] = 0

(42)

∂L
∂φ

= t f [−DXλx] + αr(4φ − 2) = 0 (43)

where

∂µ

∂D
=



1
y

cg

X (NF + NR) if cgD/X < rm

1
y

cg

X NF if rm ≤ cgD/X ≤ V

0 if V < cgD/X

and

∂ug

∂D
=


cg

X if V ≥ cgD/X

0 if V < cgD/X

∂ul

∂D
=


0 if cgD/X < rm

−cg/X if rm ≤ cgD/X ≤ V

0 if V < cgD/X
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