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Sumario. Algunos métodos conocidos permiten encontrar los momentos y las funciones de distribución de probabilida-

des correspondientes. Nosotros mostramos una manera alternativa de generar una función densidad, usando una función 

transformadora (la T-función) y la correspondiente ecuación diferencial de transformación (la T-ecuación). Esta T-

función puede definirse en un proceso experimental, y se obtendría en las mediciones de laboratorio. Se obtiene la equi-

valencia matemática de la conocida ecuación de Svedberg-Oden, normalmente usada en procesos de sedimentación gra-

vimétricos, y la T-ecuación diferencial. Se muestra algunas T- funciones y las correspondientes funciones densidad, así 

como sus gráficos para los procesos de segundo orden. Usando una muestra virtual de partículas de parámetros conoci-

dos, y basado en un método óptico de medición, es simulado el proceso de determinación experimental de distribuciones 

de partículas pequeñas suspendidas en un líquido. Las funciones de densidad obtenidas usando este método alternativo 

presentan una concordancia satisfactoria, comparadas con las funciones de la muestra virtual correspondiente.  

 

Abstract.  Some known methods allow to find the moments and the corresponding probabilities distribution functions. 

We show an alternative way to generate density funtions, using a transforming function (T-function) and the corre-

sponding differential transforming equation (T-equation). This T-function can be defined from an experimental proc-

ess, and would be obtained in laboratory measuring. It is obtained the mathematical equivalence of the known and 

usually used in gravimetric sedimentation process Svedberg-Oden´s equation and the differential T- equation. Some T- 

functions and the corresponding density functions, as well as their graphics for processes of second order, it is shown. 

Using a virtual sample of particles of well-known parameters and based on an optical measuring method, the experi-

mental determination process of suspended in a liquid small particle distributions, is simulated. The density functions 

obtained using this alternative method show a satisfactory agreement in comparison with the functions of the corre-

sponding virtual sample. 
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1 Introduction 
 

Some known methods allow to find the moments and 

the corresponding distribution functions of probabili-

ties. Unlike to named generating functions, or charac-

teristic functions
1
, we show an alternative way

2
 to gen-

erate density functions, by means a transforming func-

tion (T-function) G(t), and the corresponding differen-

tial transforming equation (T-equation).  

The cumulative or integral distribution function, and 

the corresponding density function, also called differen-

tial distribution function,  for the random variable t, are 

usually defined respectively as
1
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We consider a transforming T- function G(t)  as a 

function that expresses a certain process behavior.  

The integral function P(t)   defined in (1.1) is always 

a non-decreasing function of  t. For this cumulative dis-

tribution and for the corresponding density function 

(1.2),  the T-function G(t) will be a non-increasing 

function of  t. Next we considered only this type of 

functions G(t), which not subtract generality to results. 

Functions equivalent to (1.1) and (1.2), for character-

izing distributions of temperature, mass, size or other 

parameters, corresponding to different types of physical 

systems, would be defined from appropriate T- func-

tions. 

. 

2 A transforming function for obtaining 
the distribution density 
 

The transforming T-function in second order 

processes. Among all the possible processes, here we 

considered a second order process, defined when the 

density function F (t) is related with the corresponding 

T- function G(t) through the differential T- equation,  

dt

tdGt
tF

)(
)(

0τ
−=    (0.3) 

 1)0( =G     (0.4) 

where τ0  is a time parameter. 

Some more general cases could be analyzed. 

When the T-function can be defined from an experi-

mental process, it would be obtained in laboratory 

measurings. By means of a known T- function G(t), and 

using the T-equation (2.1), we obtain in a direct way the 

corresponding density function F (t).  

We will consider here the case of physics conditions 

for the existence of G(t), according to (2.1). 

For a differential equation (2.1), with  corresponding 

initial condition, the uniqueness theorem states that 

there is a one-to-one correspondence between distribu-

tion functions and T- functions. Table I gives some ex-

amples of transforming T- function, the corresponding  den-

sity  functions, and their graphics for second order processes. 

By integrating the differential equation (2.1), with 

initial condition G(0) = 1, we obtain formally the T-

function as: 

0
0

( )
( ) 1

x F t
G x dt

t
τ= − ∫    (2.3) 

The integral distribution P (t) is in this case obtained 

according to density function from (2.1) by means the 

formula; 

dttFxP
x

∫=
0

)()(     (2.4)                   

where x represent here the process time values. 

The Svedbeg-Oden´s equation. Among the most 

elementary methods using the process of centrifugal or 

gravimetric sedimentation to obtain the integral distri-

bution function P = P(t) of a sample of particles in 

suspension, we consider the known Svedberg-Oden´s 

method
3
 of tangential intercepts, corresponding to equa-

tion (2.5).  

According to this method, the particles integral dis-

tribution function for size can be obtained as: 

             ( ) ( ) ( )
d

P t H t t H t
dt

= −        (2.5) 

Where H =H(t) is a function characterizing the varia-

tion of sedimented mass or fraction settled in time t. 

Next we show the equivalence of known Svedberg-

Oden´s equation (2.5), for gravimetric sedimentation, 

and the T- equation (2.1). 

The T-function for particle distributions. The 

methods of gravimetric sedimentation use the deposited 

mass, and how it is increasing with time. However, in-

stead of deposited mass, it is possible to obtain the in 

time mass variation inside a small suspension volume,  

using an optical method,
 3

 finding also the functions of 

particles distribution. 

For this we take, instead of H(t), a measure of the 

time change of this function in a small region.  Thus, 

we choose the T-function G(t) as, 

0
( ) ( )

d
G t H t

dt
τ=                   (2.6) 

Deriving the Svedberg-Oden´s equation (2.5) in both 

members and substituting, according to equation (2.6), 

if one keeps in mind (1.2), it is obtained in direct way 

the T-equation (2.1). The density F(t) is then defined 

from the corresponding T- function G (t). 

For characterizing the time mass variation of parti-

cles in a small measuring region, we choose the T-

function G (t) as proportional to decreasing law of par-

ticle mean mass in the small volume, 

0

( )
( )

M t
G t

M
=                       (2.7) 

Where M (t)  is the mean mass of a particle in time t, 

and M0   its value in  t = 0. 

 

3 Obtaining the density functions from 
virtual samples 
 
To show the feasibility of method we considered a par-

ticles virtual sample. Here a particles virtual sample  is 

the distribution functions and the parameters whose 

well-known numeric values corresponds with the at-

tainable parameters from experimental measurements 

using samples of real particles. 

These virtual samples were previously prepared with 

chosen parameters. The calculation of the samples was 

carried out by independent way. A watery suspension 

was supposed, and the water density was considered 

1,00. Symmetrical and asymmetrical forms for the vir-

tual particles sample density functions were considered. 

Next we choose a very simple mathematical structure 
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for describing these density functions. 

 

The asymmetric density function. As asymmetric 

density function we take, 

2
( )

t
t

f t e τ

τ

−

=   (0.5) 

Where the time parameter τ corresponds to the value 

where it happens the maximum of the function. For this 

function, τ  is also a mean time in that a particle crosses 

the measuring region. 

As parametric model for the distribution density 

function, the Euler´s Beta function with two form pa-

rameters, p, q , was selected. 

The density function is represented as; 
1 1( ) (1 )p q

F t A t t
− −= −   (0.6) 

Where A is a normalization constant. 

The T-function G (t) is then obtained from (2.3) as; 

2 1

0
0

( ) 1 (1 )
x

p qG x A t t dtτ − −= − −∫      (0.7) 

Next, in Table II we considered for the case of 

asymmetric virtual sample five mass values, equivalent 

to five measurements . 

To obtain the solutions, it is solved the following 

system of non- linear equations, using the minimum 

error routine of the MathCad 2000 Professional soft-

ware. 

In the equation system the time values from Table II 

appear in the superior limit of integrals, normalized in 

relation to a time parameter T, as x1, x2, x3, x4, x5. In 

this example T = 1500 minutes. 

1, 2, ..., 5i

i

t
x i

T
= =�   (0.8) 

The simulated measured masses appear to the left of 

the equations, in the numerators, as M1, M2, M3, M4 and 

M5. We take five parameters in the equations, with the 

conditions; 

00 ; 0 ; 0; 0p q A M>  > > >  

The system of  equations is: 

1

2
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4 2 14

0
0

0

1 (1 )
x

p qM
A t t dt

M
τ − −= − −∫  

5 2 15
0

0
0

1 (1 )
x

p qM
A t t dt

M
τ − −= − −∫  

 

Where A is the normalization parameter, p, q are  the 

form parameters of Beta function, τ0 is a time parame-

ter, and M0 is the mean particle mass for t =0. 

 

Table II 
The simulated experimental values from the  

asymmetric virtual sample. 

Number Time (minutes) Mean mass  (grams) 

1 1 3,210 x 10-12 

2 25 2,842 x 10-12 

3 50 2,123 x 10-12 

4 25 1,581 x 10-12 

5 100 1,185 x 10-12 

 

Table III 
The simulated measured values of Mi / M0, and the 

corresponding values evaluated for the T-function 

G(t) from (3.3) and (3.5) using the obtained parame-

ters. 

Number Mi / M0 G(ti) 

1 0,98812 0,98812 

2 0,24191 0,24189 

3 0,55295 0,55802 

4 0,41182 0,41125 

5 0,31143 0,31141 

 

Table IV 
Simulated experimental values from  the symmetric  virtual 

sample.  

Number Time (minutes) Mean mass  (grams) 

1 1 3,499 x 10-12 

2 4 3,424 x 10-12 

3 8 3,141 x 10-12 

4 12 2,290 x 10-12 

5 30 1,250 x 10-12 

 

 

 
 

Figure 1. Results of Table III for the values of  transforming 

T- function G(t),  where: G1 = Mi /Mo  are  the simulated 

experimental values, and G2 = G(ti) the corresponding values 

evaluated from (3.5) and (3.3). 
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Table I 

Some transforming T- functions,  the corresponding  density  functions, and their graphics for second order 

processes.  Here the parameter s=0τ  

G(t) F(t) 
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(*) We consider the real error function erf(x), defined as;    ∫ −=
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The solutions are, with five decimals, M0 

=3,80501x10
-12

 g;  p = 1,99209;  q = 12,10108;  τ 0 = 

0,05201;  A = 321,09398. 

Comparison of simulated measured and evaluated 

values for T-function are shown in Table III. 

The results from Table III are shown in the graph of 

Figure 1, describing G(t) as decrease in time of the 

particles mean mass in measuring region.  The compara-

tion of density function obtained with the simulated data 

is shown in Figure 2, where f(t) is the virtual sample 

curve and F(t) is the curve obtained from (3.2), accord-

ing to  proposed method.  In this example, for virtual 

sample curve, the distribution maximum is reached at 

85,235 minutes, and for the curve obtained from (3.2) at 

84,522 minutes. 

The symmetric density function. We take this 

function as a Gaussian virtual sample. 

( )
2

22
1

( )
2

t

f t e

µ

σ

σ π

−
−

=   (0.10) 

Table IV gives the corresponding simulated mean mass 

values in time for this Gaussian sample. 

By solving the non- linear equations system gives the 

following values; M0 =3,49902 x 10
-12

 g, A = 1,13215 x 

10
-5

, p = 1,93944, q = 10,84923, τ0 = 0,18541. 

 

 
 

Figure 2. Representation of both curves for the asymmetric 

case. Here f(t) is the simulated experimental curve, given by 

(3.1) and F(t) is the corresponding curve obtained using  the 

proposed method, according to (3.2). The abscissas axis is 

adimensional and is normalized with regard to an arbitrary 

time value T, taken in the present example like 1500 minutes. 

 

The result can be observed in Figure 3, where distri-

bution maximum is reached now for simulated experi-

mental curve at 10,5 minutes, and for the proposed 

method curve at 11,281 minutes. The abscissas axis is 

here normalized to 30 minutes. 
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From figures 2 and 3 we can observe satisfactory re-

sults when the  virtual sample distributions is recovered 

from the proposed method. It could be proven that using 

the Euler´s Beta function, with two form parameters, p, 

q, the result is satisfactory so much for symmetrical as 

asymmetrical distributions. 

The corresponding integral function of particle distri-

bution P(t)  would be calculated in these cases from  

(2.4), 

1 1

0

1
( ) (1 )

x
p qP t t t dt

A

− −= −∫  . (0.11) 

 

3 Conclusions 
 

An alternative way to generate a density function was 

shown. It was defined a transforming function (T-

function) like a function expressing a certain process 

behavior. By means of this function and using the dif-

ferential transforming equation (T-equation), the corre-

sponding density function is obtained in a direct way.  A 

group of T- functions, and the corresponding density 

functions obtained using the T-equation, were shown. 

It was obtained the equivalence of the known Sved-

berg-Oden´s equation and the T- equation, for finding 

the distribution  functions of particles in suspension. 

The T- function depends in this case on the time de-

crease law of particle mean mass inside a small suspen-

sion region. 

Using the proposed method virtual samples of small 

particle distributions were investigated, choosing like 

parametric model the Euler´s Beta function, with two 

form parameters, p, q. The obtained results were satis-

factory so much for symmetrical as asymmetrical distri-

butions. It was supposed that parameters of the investi-

gated virtual samples are equivalent to those attainable 

from measurements, by using an optical system.
3
 

In the frame of this work, different particle virtual 

samples with mean diameters from 1 micrometer until 

less than 50 nanometer were processed. Different parti-

cle density- from 1,05 (latex) up 4,20 (titanium dioxide) 

were considered, with satisfactory results. 

In real samples the results would depend strongly on 

the quality of G(t) measurings. 

A wide summary of optical techniques for character-

izing particles can be consulted in the specialized litera-

ture.
4
 The proposed alternative method shown in this 

work would be extended to others applications. 

 
 

Figure 3. Comparison of curves for the Gaussian case, where 

f(t) is again the simulated experimental curve and F(t) is the 

curve obtained by this alternative method. The time parameter 

T normalizing the abscissas axis is in this case 30 minutes. 
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