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Abstract.  For fluctuating but statistically stationary beams of light the degree of polarization contains only limited in-

formation on time-dependent polarization.  Two approaches towards assessing a beam’s polarization dynamics, one 

based on Poincaré and the other on Jones vector formalism, are described leading to the notion of ‘polarization time’.  

Specific examples of partially temporally coherent electromagnetic beams are discussed. 

 

Sumario.  En haces estacionarios, el grado de polarización sólo contiene información limitada de la dependencia tem-

poral de la polarización.  Para evaluar los cambios dinámicos de la polarización del haz dos métodos son descritos, 

uno basado en el formalismo vectorial de Poincaré y el otro en el de Jones, conduciéndonos al concepto de ‘tiempo de 

polarización’.  Ejemplos específicos de haces electromagnéticos coherentes parcialmente temporales son analizados. 
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1 Introduction 
 

Beams of radiation generated by all sources (natural or 

artificial) exhibit polarization fluctuations, either due to 

the inherent features of the source or because of random 

variations in the medium.  By characterizing the proper-

ties of these fluctuations, one can extract useful informa-

tion about the source and the medium.  The importance 

of polarization fluctuations has been addressed in several 

theoretical and experimental studies, such as on polariza-

tion mode dispersion in ordinary and specialty optical fi-

bers,
1
 super-continuum generation,

2 
polarimetric radar 

imaging 
3 

, vertical cavity surface emitting lasers,
4 

 atom-

field interactions,
5 

and polarimetry of cosmic waves, 

such as the microwave background radiation from early 

universe. 
6
 

However, the dynamical properties of polarization 

fluctuations, which distinguish the fields even when their 

degrees of polarization are the same, have not been di-

rectly studied.  Here we use two different approaches to 

analyze the polarization-fluctuation dynamics of beam-

like (2D) electromagnetic fields. This leads to the notion 

of ‘polarization time’.  We demonstrate the models by 

applying them to various particular cases, including par-

tially polarized beams obeying Gaussian statistics and 

laser beams passed through an optical depolarizer. 

 

2 Polarization fluctuations 
 

The key point of our analysis is that the electric field 

vector of a statistically stationary and partially polarized 

electromagnetic beam fluctuates randomly in time, but at 

each instant of time the field is fully polarized.  We wish 

to characterize the dynamics of these time-dependent po-

larization changes, while the usual ‘degree of polariza-

tion’ is constant.  The degree of polarization only in-
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volves equal-time correlations and so it is independent of 

the beam’s temporal coherence (and spectral) properties. 

We adopt two different approaches, one based on the 

Poincaré vector description and the other on the Jones 

vector formalism 
7 

.  These two methods lead to physi-

cally similar results, so both can be employed.   Indeed, 

they are also mathematically very closely connected, as 

we show. 

Poincaré vector.  The Poincaré vector S = (S1,S2,S3) 

is a real-valued three-dimensional vector that consists of 

the Stokes parameters S1, S3, and S3.  When normalized 

by the optical intensity, i.e., the Stokes parameter S0, we 

obtain the unit-length Poincaré vector s = S/S0.  For a 

stationary beam s = s(t) varies randomly in direction, 

with anti-parallel directions representing orthogonal 

states of polarization, while its magnitude remains con-

stant (= unity), regardless of the instantaneous values of 

the intensity of the beam.  Thus the random function s(t) 

does not account for the intensity fluctuations. 

However, the random function S(t) = s(t)S0(t) does – 

this quantity characterizes both the polarization and the 

intensity fluctuations, which may or may not be corre-

lated.  Thus, it is natural to employ the quantity  C(τ) = 

<S(t)⋅S(t+τ)> = <[s(t)⋅s(t+τ)] S0(t)S0(t+τ)> in the analy-

sis of the fluctuation-induced changes of the polarization 

state and intensity of the beam.  Clearly, the (fourth-

order field) correlation function C(τ) has, in magnitude, 

the maximum value of  <S0(t)S0(t+τ)>.  Hence, the nor-

malized correlation function for the characterization of 

the dynamics of the polarization fluctuations takes on the 

form 
8 
 

p, Poincaré
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( ) ( )
( )

( ) ( )
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S t S t

τ
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τ
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 .  (1) 

This parameter is a measure of the similarity of the po-

larization states at times t and t+τ. It is obvious that 

p, Poincaré (0) 1γ =
 
and 

p, Poincaré1 ( ) 1γ τ− ≤ ≤ . The upper and 

lower limits correspond to those cases in which the po-

larization states at time separations τ are the same and 

orthogonal, respectively.  If the beam remains in the 

same polarization state, say a linear or circular polariza-

tion, then 
p, Poincaré ( ) 1γ τ =  for all τ.  When the polarization 

state changes in time, one may introduce a ‘polarization 

time’ τp 
8,9 

, as  illustrated in Fig. 1.  The quantity τp is a 

characteristic measure of the time duration within which 

the electric field, on average, stays essentially in the 

same polarization state.  Associated with τp is a ‘polari-

zation length’ lp = cτp, where c is the speed of light, for 

the beam. 

Jones vector.  For a beam field the two-dimensional 

complex electric-field vector E(t) can be regarded as the 

Jones vector 
2 

.  The second approach then is based on 

evaluating the mean value of the fraction, η(t, t+τ), of 

the beam’s intensity left in the initial polarization state 

after time τ.  A function,
 p, Jones ( )γ τ  , defined  as the inten-

sity-weighted, normalized average of  η(t, t+τ), can be 

expressed in terms of the instantaneous Jones vectors 

E(t) and E(t+τ) as 
10 

 
* 2

p, Jones
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The function given in Eq. (2) has the general properties 

p, Jones
(0) 1γ =  and 

p, Jones0 ( ) 1γ τ≤ ≤ .  For a beam field that 

maintains its state of polarization we have 
p, Jones ( ) 1γ τ =   

for all τ, while for partially polarized beams 
p, Jones ( ) 1γ τ < , 

when τ > 0. Hence using Eq. (2) we may introduce a po-

larization time τp in full analogy with Fig. 1, except that 

in this case the quantity 
p, Jones

( )γ τ   is allowed to fall off 

from its maximum value of unity, when τ = 0, to a value 

of say 3/4 only. Physically both definitions are essen-

tially the same. For this τp we naturally also obtain the 

corresponding polarization length, lp = cτp.
9 
 

 
Figure 1.  Illustrating the definition of polarization time for a 

partially polarized electromagnetic beam.  The time separation 

during which p, Poincaré( )γ τ  falls to a relatively small value, say 

1/2, defines τp. 

 

3 Beams of gaussian statistics 
 

For beams of Gaussian statistics the fourth-order field 

correlation functions in Eqs. (1) and (2) can be  reduced 

to the second-order correlation functions by the use of 

the Gaussian moment theorem for complex-valued func-

tions 
7 

.  More explicitly, from Eqs. (1) and (2) we find 
8,10 
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2

EM 2
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tr [ (0)]

τ τ
γ τ

Φ Φ −
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Φ
 ,   (7) 

and (with i,j = x,y) 
 

  { }*( ) ( ) ( )i jE t E tτ τΦ = +     (8) 

is the 2x2 mutual coherence matrix 
7 

.  Here, P is the 

beam’s degree of polarization 
7 

, γW(τ) is a complex elec-

tric correlation function (time-domain analogy to the in-

tensity-fringe visibility) 
11 

, and γEM(τ) is the electromag-

netic degree of coherence 
12 

. 

It follows by simple algebra from Eqs. (3) and (4) 

that 
p, Poincaré ( )γ τ  = 2

p, Jones ( )γ τ  - 1.  Indeed, this result 

holds not only for stationary beams obeying Gaussian 

statistics, but one can by straightforward calculations di-

rectly prove that Eqs. (1) and (2), in general, satisfy this 

relationship 
10 

.  This result thus shows that the two ap-

proaches are in full quantitative agreement. We observe 

that 2

p, Poincaré
( ) Pγ τ →  as τ tends to infinity, while   

2

p, Jones
( ) ( 1) / 2Pγ τ → +

 
in the same limit. 

 

4 Examples 
 

We demonstrate the usefulness of our formulations by 

several specific examples taken from the nature and from 

practical applications with laser radiation. 

 

Gaussian correlated beams.  Suppose that the 

mutual coherence matrix Φ(τ) of the beam is of the form 
2 2( ) exp( / 2 )τ τ σΦ = −J  ,    (9) 

where J is the polarization matrix and σ characterizes 

the beam’s coherence time.  On substituting this into Eq. 

(3) we obtain 
8 
 

2 2 2 2

p, Poincaré 2 2 2

2 (3 )exp( / )
( )

2 (1 )exp( / )

P P

P

τ σ
γ τ

τ σ

+ + −
=

+ + −
 .  (10) 

This result is plotted in Fig. 2 for three values of P.  It is 

seen that for substantially unpolarized beams (low values 

of P) the polarization time τp is approximately equal to 

the coherence time σ. For larger values of P the polariza-

tion time increases, while the coherence time of course 

remains unchanged. 

 

Blackbody radiation pencils.  Let us now assume 

that we draw a pencil of light form a blackbody radiation 

source at temperature T.  The beam (in any direction) 

then is fully unpolarized 
13 

 and it is described by the 

Planck spectrum 
7 

.  From this information we may at 

once compute the mutual coherence matrix Φ(τ) for the 

pencil. On substituting it into Eq. (4) we then find, after 

some algebra, that 
10 
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�

�

,  (11) 

where kB is Boltzmann’s constant, �  is the Planck con-

stant divided by 2π, and ξ(s,a) is the generalized Rie-

mann-Hurwitz zeta function 
7 
. 

 

 
 

Figure 2.  Behavior of p, Poincaré ( )γ τ
 
for temporally Gaussian 

correlated and partially polarized beams, leading to definitions 

of the polarization time τp. 

The function in Eq. (11) is illustrated in Fig. 3 for 

three temperatures T. We see that 
p, Jones ( )γ τ  falls off fast-

er for the higher temperatures.  From the points at which 

p, Jones ( )γ τ  intersects 0.75 (dashed line in the figure) we 

may read the corresponding polarization lengths lp, i.e., 

about 4 µm, 39 µm, and 114 µm for temperatures 300 K, 

30 K, and 10 K, respectively.  As we have explained 

above, identical results would be obtained from the 

points where p, Poincaré ( )γ τ   takes on the value 0.5. 

 

 
 

Figure 3.  Illustration of p, Jones ( )γ τ  for blackbody radiation 

beams at three different temperatures T. Intersections with the 

horizontal (dashed) line at 0.75 give the corresponding polari-

zation lengths lp.  

If we consider that the sun is a blackbody source at 

temperature T = 5800 K, as is often done, we readily ob-

tain an estimate of lp = 200 nm for the polarization 

length of a beam of radiation from the sun.  Likewise, 

the cosmic microwave background (CMB) radiation can, 

to a very high level of accuracy, be regarded as a black-

body field at temperature T = 2.73 K 
14 

.  For a pencil of 

CMB radiation we then find a polarization length of lp = 

0.42 mm.
8,9
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Depolarized laser beams.  As an illustrative prac-

tical example we consider an optical system that is used 

to depolarize a laser beam.  Let us assume that a linearly 

polarized laser beam is split into two beams of equal 

powers and orthogonal (say, x and y) polarization states 

by making use of a polarizing beam splitter.  The beams 

are allowed to propagate different distances, after which 

they are recombined into a single beam with another po-

larizing beam splitter. If the time delay, denoted by τd, of 

one beam with respect to the other is much longer than 

the coherence time σ of the incident field, the resulting 

beam can be considered unpolarized. If we further as-

sume that the incident laser beam has a Gaussian time-

domain correlation of the type in Eq. (9), i.e., that its de-

gree of temporal coherence is given by exp(-τ2
/2σ2

), we 

then find from Eq. (4) that 
10 

 
2 2 2 2

2 2 2 2 2 2

/ /

p, Jones / ( ) / ( ) /

2 2 4
( )

4 2

d

d d d

e e

e e e

τ σ τ σ

τ σ τ τ σ τ τ σ
γ τ

− −

− − − − +

+ +
=

+ + +
.   (12) 

In Fig. 4, this quantity is plotted as a function of τ/τd for 

several values of τd/σ, ranging from 0 to 20.  As the time 

separation τ increases, all curves tend to the expression 

[exp(-τd
2
/σ2

) +1]/2.  Thus, the degree of polarization then 

is P = exp(-τd
2
/2σ2

), so that for sufficiently long delays 

τd the resulting beams indeed are unpolarized. 

When τd/σ = 0, the beam is fully polarized and the 

polarization time is infinite.  For τd/σ slightly positive 

the function  
p, Jones ( )γ τ  still remains high enough so that 

the polarization time stays infinite.  However, for larger 

values of τd/σ the polarization time is finite and it be-

comes shorter as τd/σ increases.  Physically this means 

that the instantaneous polarization state evolves faster in 

time and it also deviates more from the average.  Then, 

for very large values of τd/σ, the beam is essentially un-

polarized and the polarization time τp is close to the co-

herence time σ. 

We also observe that for large values of τd/σ the 

function p, Jones
( )γ τ  has a local minimum that is less than 

1/2.  This means that, on average, no matter what the 

beam’s polarization state is at time t, at time t + τ the or-

thogonal polarization state will have a higher intensity. 

The time interval within which p, Jones ( )γ τ  is lower than 

1/2 can be several coherence times σ. 

When the delay τd increases, the local minimum of    

p, Jones ( )γ τ
 
moves towards τ/τd = 1.  It follows from Eq. 

(12) that p, Jones ( )γ τ  then approaches the value of 2/5. 

Hence, on average, at time separation τ = τd, a fraction of 

3/5 of the light intensity has shifted to a state of polariza-

tion that is orthogonal to the original (instantaneous) po-

larization state. 

 

4 Conclusions 
 

From our analysis it is evident that the two quantities, 

p, Poincaré ( )γ τ  and p, Jones ( )γ τ , can be used equally well to 

describe the dynamics of the fluctuating polarization 

state.  In particular, they characterize how fast, on aver-

age, the instantaneous polarization state changes as a 

function of time.  Furthermore, they yield different in-

formation on the polarization dynamics.  Whereas the 

quantity p, Poincaré ( )γ τ characterizes the average movement 

of the tip of the random temporal Poincaré vector on the 

Poincaré sphere, and connects the effective deviation of 

the tip from its average position to the degree of  polari-

zation, the quantity p, Jones
( )γ τ  instead directly describes 

the energy exchange between the field's (instantaneous) 

orthogonal polarization states.  We have considered the 

properties of these two quantities and their implications 

in several specific examples that arise in nature or in 

practical applications.  Both of these functions can be 

used to introduce and assess the notions of ‘polarization 

time’ and ‘polarization length’ for a beam field.  These 

concepts are useful, characteristic measures over which 

the polarization state of a stationary (but random) beam 

field remains essentially unchanged.  Examples such as 

manmade depolarized laser beams can readily be ana-

lyzed with the concepts discussed in this paper. 

 

 
 

Figure 4.  Behavior of p, Jones ( )γ τ  for a depolarized laser beam 

for several values of τd/σ, where τd is the delay of one of the 

beams in the superposition and σ is the coherence time of the 

original (fully polarized) laser beam.  The parameters τd/σ 

range from 0 to 20.  
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