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The dynamics of small perturbations against the stationary 
density matrix of a pumped polariton system with only one 
photon polarization is studied. Depending on the way the system 
is pumped and probed, decay times ranging from 30 to 5000 ps 
are found. The large decay times under resonant pumping are 
related to a bottleneck effect in the decay of the excess (probe) 
populations of dark polariton states. No singular behaviour at the 
threshold for polariton lasing is observed.  

Se estudia la evolución temporal de pequeñas perturbaciones 
alrededor de la matriz densidad estacionaria de un sistema 
bombeado de polaritones con sólo una polarización para los 
fotones. Dependiendo de la forma en que el sistema es bombeado 
y medido se obtienen tiempos de relajación en el rango de 
30 a 5000 ps. Los tiempos grandes en régimen de bombeo 
resonante se relacionan con un efecto de embotellamiento en 
el decaimiento de las poblaciones en exceso de los estados 
polaritónicos oscuros. No se observa un comportamiento singular 
en el umbral del láser polaritónico. 

PACS: 71.36.+c Polaritons, 78.47.Cd Time resolved luminescence, 42.55.Sa Microcavity and microdisk lasers 

Polariton lasers are lasers without population inversion [1]. 
Coherence buildup in them is the result of the quasibosonic 
statistics of the polaritons, i.e. quasiparticles composed by 
electron-hole pairs from a quantum well strongly interacting 
with photons from a semiconductor microcavity. They share 
similarities with ordinary photon lasers and Bose-Einstein 
condensates [2, 3]. In these devices, the threshold power for 
lasing is 1 - 2 orders of magnitude lower than in ordinary 
lasers. Room-temperature polariton lasing has been recently 
reported [4].

Besides these promising characteristics, polaritons in 
microcavities provide an exceptional possibility for 
fundamental research. An example is the recent paper [5], 
where the authors seek for evidences of the Goldstone boson, 
which should appear in connection with the buildup of 
coherence in the polariton system. Indeed, in a cylindrical 
microcavity, the two (approximately) circular polarizations of 
the fundamental photon mode are related to two degenerate 
polariton “condensates”. The relative phase between the two 
photon polarizations acts as an order parameter. Phase fixing 
leads to a linear polarization [6], whose direction can be easily 
rotated (the Goldstone excitation). In paper [5], Ballarini et. al. 
study the changes in the PL response of a planar microcavity 
induced by small pulse perturbations of the pumping. They 
measure the lifetime of these perturbations, showing that it is 
much higher than the cavity decay time, and that it increases 
when the stationary pumping approaches the threshold for 
polariton lasing. These results are interpreted as a measurement 
of the lifetime of the Goldstone boson [7].

Recent experimental measurements of time-resolved PL in 
similar systems [8] reveal the importance of both the dynamics 
involving a single polarization, and the dynamics involving the 
two photon polarizations. On the other hand, a system with 
a single photon polarization - a single polariton condensate - 
could be realized by means of a strong magnetic field breaking 
the degeneracy between the “right-handed” and “left-handed” 
condensates.

In the present paper, I consider a model with a single 
photon polarization and explore how the way the system 
is pumped and probed influences the decay dynamics of 
the perturbations. I started from a scheme, sketched in 
Refs. [9, 10], in which pumping and photon losses in the 
polariton system are described by means of two terms in the 
master equation for the density matrix. The linearization of 
the master equation around the stationary solution leads 
to a system of equations with a source term for the small 
perturbations. The way the system is pumped determines the 
small-oscillation modes of these equations, whereas the way 
the system is probed determines which of the eigenmodes 
are excited. In an oversimplified model, with very strong 
exciton-photon coupling, I found decay times from 30 to 
5000 ps, with no singular behaviour at the polariton lasing 
threshold. The large decay times correspond to eigenmodes 
involving the excitation of dark polariton states which, 
under resonant pumping, exhibit a bottleneck effect. In 
this sense, our results show that large decay times may not 
necessarily be connected with the lifetime of a Goldstone 
boson.
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The starting point is a simple expression for the stationary 
spectral function, S(ω), describing the PL emission along the 
cavity symmetry axis, Eq. (19) of Ref. [11]: 

S(ω) =
1

π

∑
I,J

|〈I|a|J〉|2ρ(∞)
J ΓIJ

Γ2
IJ + (ωIJ − ω)2

.

		    
(1)

The magnitudes ΓIJ (linewidhts) and ωIJ = (EJ − EI )/  depend 
only on the many-polariton wavefunctions and energies, and 
the system parameters, P (pumping rate), and κ = 0.1 ps−1 
(photon losses rate). 〈I|a|J〉 are the matrix elements of the 
photon annihilation operator between the many-polariton 
wavefunctions |J〉 and |I〉.

In our model, describing a many-exciton quantum dot strongly 
interacting with the lowest photon mode of a microcavity [11], 
the wavefunctions and energies, and from them ΓIJ , ωIJ, and 
〈I|a|J〉, are obtained by numerically diagonalizing the electron-
hole-photon Hamiltonian. On the other hand, the stationary 
solutions,  should be obtained from the master equation for the 
occupations (coherences are three orders of magnitude smaller 
[10] and will be neglected): 

dρI
dt

= κ
∑
J

|〈I|a|J〉|2ρJ − κ ρI
∑
J

|〈J |a|I〉|2

+
∑

Npol(J)=Npol(I)−1

ρJ PJI

− ρI
∑

Npol(J)=Npol(I)+1

PIJ .

  

(2)

Npol(J) is the polariton number (number of electron-hole pairs 
plus number of photons, which is a conserved quantity) of state 
|J〉, and PJI is the pumping rate from state J to state I. Notice that 
Eqs. (2) depends only on κ, P, and the matrix elements 〈I|a|J〉. 
These equations are linearly dependent, which expresses the 
conservation of probability: 

∑
I

ρI = 1.
   (3)

The stationary solutions, ρI
(∞), are obtained by making 

the l.h.s. of Eqs. (2) equal to zero, and complementing 
this homogeneous linear system with the normalization 
condition, Eq. (3). 

Under a small perturbation of the pumping rate, δP(t), there is 
a variation of the density matrix, δρ(t), and a variation of the 
spectral function: 

δS(ω, t) =
1

π

∑
I,J

|〈I|a|J〉|2 δρJ(t) ΓIJ

Γ2
IJ + (ωIJ − ω)2

.

   
(4)

The response, δρI, to the pulsed perturbation δP(t) satisfies the 
linear system obtained by varying Eqs. (2): 

dδρI
dt

= κ
∑
J

{
|〈I|a|J〉|2δρJ − |〈J |a|I〉|2δρI

}

+
∑

Npol(J)=Npol(I)−1

(
δρJ PJI + ρ

(∞)
J δPJI(t)

)

−
∑

Npol(J)=Npol(I)+1

(
δρIPIJ + ρ

(∞)
I δPIJ(t)

)
,

  

(5)

which should be complemented with: 
∑
I

δρI = 0.   (6)

The structure of Eqs. (5) is the following: dδρ/dt = Aδρ 
+ δP(t)Bρ(∞). The eigenvalues of matrix A are the small 
oscillation frequencies of the system, whereas the probe 
perturbation, matrix B, and the stationary density matrix 
conform the source term determining which oscillation modes 
are excited by the probe pulse.
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Figure 1: Uniform pumping. (a) Position of the PL line as a function of 
the pumping rate. (b) Photon second-order coherence function. 

Let us recall the diagonal terms in Eqs. (5) in order to get a 
qualitative understanding of the decay times: 

dδρI
dt

= −κ
∑
J

|〈J |a|I〉|2δρI

− δρI
∑

Npol(J)=Npol(I)+1

PIJ + · · ·
  

(7)

This equation shows that the excess occupation of state I, δρI, 
can decay in two ways. The first term corresponds to photon 
emission, and the second to pumping the excess occupation to 
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a higher polariton state, J, which may further decay through 
photon emission. When the state I is dark, ΣJ|〈J|a|I〉|2 ≈ 0, only 
the second mechanism acts. If, in addition, δρI is not pumped 
to higher states because of selective pumping (PIJ ≈ 0), then 
the decay of δρI may take very long times. Below, we consider 
different regimes of pumping and probing the polariton system.

(a) Uniform pumping and uniform perturbation  In this case, 
PIJ = P, and δPIJ(t) = δP (t). This situation seems to correspond 
to laser excitation energies well above the lower polariton 
branch, and perturbations at these higher energies. 

I show in Fig. 1 the position of the main PL line as a function 
of the pumping rate, and the corresponding photon second-
order coherence function, g(2)(0). The jump in the position of 
the line, and the values near one of g(2)(0) identify the threshold 
for polariton lasing at Pthr ≈ 0.00014 ps−1 in the model, where 
I use the following states in order to solve Eqs. (2) for the 
stationary density matrix: the vacuum (I =1), the 17 existing 
one-polariton states in the model (I =2−18), the 256 existing 
two-polariton states (I =19−274), and 256 states in each sector 
with 2 < Npol ≤ 10.
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Figure 2: (Color online) Time evolution of the energy-integrated 
differential PL response, Eq. (9), under uniform pumping. (a) Uniform 
perturbation. (b) Selective perturbation.

I will study the decay dynamics of the probe for P values in the 
vicinity of Pthr . The probe pulse is taken in the following way:

δP (t) = 10−5 exp−(t− 1)2 ps−1,  (8)

where t is given in ps. We find the δρI from Eqs. (5) and compute, 

as in the experiment [5], the energy-integrated differential PL 
response: 

δS(t) =
∑
J

δρJ(t)
∑
I

|〈I|a|J〉|2.  (9)

The sum over I is restricted to states such that |EJ −EI − Eref| < δE, 
where δE = 2 meV, and the reference energy in the present case 
is Eref = 1489.2 meV.
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Figure 3: Selective pumping. (a) Position of the PL line as a function of 
the pumping rate. (b) Photon second-order coherence function.

I draw in Fig. 2 (a) the computed δS(t) for three values of the 
pumping rate. They show characteristic decay times of around 
30 ps. These values can be understood from the eigenvalues of 
the linearized decay modes. Indeed, let us write the smallest 
(in absolute value) eigenvalues in the present case: ..., -0.0358, 
-0.0287, -0.0117, -0.0067, -0.0023 ps-1. Notice that they are 
real, i.e. purely decaying (non propagating) modes. The first of 
them (-0.0358 ps-1, decay time ~ 28 ps, there are many such 
eigenvalues) corresponds basically to an eigenvector in which 
a single dark one-polariton state is excited. The decay is due 
to pumping to two-polariton states with further emission of 
photons. Notice that Pthr = 0.00014 ps−1 times the number of 
available two-polariton states (256) is equal roughly to the 
eigenvalue, -0.0358 ps−1. These are the modes dominating the 
observed behaviour of δS(t) in the present case. Let us stress 
that the eigenvalues practically do not change when P is varied 
around Pthr . Thus, we can not relate the slowest mode (or any 
other) to the lasing transition. In the scheme of perturbation 
I am using, modes with larger decay times are not excited. 
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In particular, the last one (-0.0023 ps−1, decay time ~434 ps) 
corresponds to an eigenvector involving the simultaneous 
excitation of one- and two-polariton dark states combined 
with higher polariton states. We shall see that slower decaying 
modes can be observed by means of a selective excitation.

(b) Uniform pumping, selective perturbation  At this point 
I consider a situation in which the system is pumped at high 
energies, as above, but resonantly perturbed. This means that  
δPIJ(t) is given by Eq. (8), only when the energy difference 
satisfies the inequality |EJ − EI − Eperturb| < δE. Otherwise it is zero. 
We show results for Eperturb = 1499.25 meV, and δE=2 meV. The 
chosen Eperturb corresponds to the resonant excitation of a dark 
one-polariton state, labeled by the number 15(Eperturb=E15-E1). 
Of course, other transitions may have the same, or close, 
excitation energy, and could be excited if they satisfy the above 
inequality. Below, we shall discuss in more details, how a dark 
state could be perturbed.

The eigenvalues have not changed because I have not modified 
the pumping scheme. But the energy-integrated δS(t) shows 
decay times of around 60 ps in the present case, indicating 
the excitation of slower-decaying modes, as compared to 
uniform perturbation. Results are drawn in Fig. 2 (b), where 
an oscillation at early times is also observed. It is possible 
that with a different perturbation energy, Eperturb , or a different 
perturbation strategy the slowest mode could be reached as 
well.
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Figure 4:  (Color online) (a) Time evolution of the energy-integrated 
differential PL response under selective (resonant) pumping and 
selective perturbation. (b) The lowest 2-polariton states with L=0 and 
L=1.

(c) Selective pumping, selective perturbation  Finally, we 
consider resonant pumping. Selective pumping can increase 
dramatically the decay times because there could be almost 
dark states, not connected to higher states through pumping. 
The decay of an excess occupation in these states could take 
very long times.
 
The stationary pumping rate is chosen in the form: PIJ = P only 
when |EJ −EI −Epump| < δE, where Epump = 1488 meV, and δE = 2 
meV. The position of the main PL line and the photon second-
order coherence function are shown in Fig. 3. The jump in the 
position of the PL line and the abrupt variation of g(2)(0) allow 
us to identify the threshold rate: Pthr ≈ 0.04 ps−1. Notice that 
this value is much higher than the threshold under uniform 
pumping, something reasonable. Notice also that even below 
threshold the coherence function take values very close to one. 
This initial coherence is, in some sense, inherited from the 
pumping.

The energy-integrated PL response is drawn in Fig. 4 (a) for 
P=0.04 and P=0.06 ps-1. After an initial transient period, the 
curves become almost flat, suggesting the excitation of very 
slow decay modes. There are many eigenvalues of the linearized 
problem with absolute value lower than 0.01 ps-1 (decay times 
larger than 100 ps). The smallest of them is -0.0002 ps-1, that is 
a decay time of 5000 ps. Let us stress that no singular behaviour 
of the eigenvalues across the threshold is found, which means 
that we can not relate any of the eigenmodes to the lasing 
threshold.

Let us consider the question about the selective (resonant) 
pumping or perturbation of a dark state. Electron-hole pairs 
with a definite energy could be injected to the system, but this 
seems to be difficult to control. On the other hand, the direct 
optical transition is prohibited because, by definition, the state 
is dark. However, notice that we are considering transitions 
between L=0 states [11], which are responsible for the PL 
emission along the cavity symmetry axis. States with L=1 or 
higher, very close in energy to L=0 states, are very common, 
as can be seen, for example, in Fig. 4(b). These L=1 states 
could be optically excited (with a non-zero transferred linear 
momentum, k



), and then may decay towards L=0 states 
through emission of very low-energy acoustical phonons. In 
the reported experiment [5], the system is both pumped and 
perturbed by using k



≠ 0 laser beans.

In conclusion, we studied a model polariton system with a 
single photon polarization and computed decay times of probe 
pulses against a stationary polariton distribution. Under non-
resonant pumping conditions, the computed decay times are 
30-60 ps, whereas under resonant pumping very large decay 
times, of the order of thousands of picoseconds, are obtained. 
The dark polariton states play a fundamental role in the decay 
dynamics, specially under resonant pumping, where the excess 
(probe) occupations of particular dark states may take very 
long times to decay. No singular behaviour of any decay mode 
at the threshold for lasing is observed.
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