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Gravity-driven thick granular flows are relevant to many industrial
and geophysical processes. In particular, it is important to know and
understand the particle velocity distributions as we get deeper into
the flow from the free surface. In this paper, we use dimensional
analysis as a tool to reproduce the velocity profile experimentally
reported for granular flows down a confined heap for the so-called
flowing layer and the creep layer underneath: the grains velocity
first decrease linearly from the free surface, and then exponentially.

Los flujos granulares gruesos causados por la gravedad son
relevantes para numerosos procesos industriales y geofı́sicos. En
particular, es importante conocer y entender las distribuciones de
velocidades de las partı́culas en la medida en que penetramos
en el flujo desde la superficie libre. En este artı́culo, utilizamos
el análisis dimensional como herramienta para reproducir el
perfil de velocidades caracterizado experimentalmente para flujos
granulares en una pila confinada, tanto para la llamada capa
fluida, como para la capa “creep” bajo ella: la velocidad de los
granos decrece primero linealmente desde la superficie y luego
exponencialmente.

PACS: Granular flows, 45.70.Mg; granular materials rheology, 83.80. Fg; shear rate dependent viscosity, 83.60 Fg.

I INTRODUCTION

Agriculture and food industries, mining, metallurgy,
transportation, construction and pharmacology are examples
of human activities where granular materials are basic
ingredients [1]. On the other hand, the study of granular
matter has shown to be a source of concepts and theoretical
methods useful in many branches of research [2].

Granular flow is one of the most important mechanisms
in granular dynamics, although it is not easy to describe.
Three regimes can be defined: a) jammed (or static) state,
where the grain’s inertia is not essential, b) “gaseous” state,
where interaction through binary collisions dominates the
dynamics and c) dense flow regime, which can be described
through “hydrodynamic” equations.

This last regime is commonly present in our life: avalanches,
landslides, sand dunes displacement and flows of grains
through funnels, hoppers or silos are some examples [3]. For
that reason many experimental and theoretical work have
been devoted to understand it in detail [4–6].

Here, we will concentrate on the description of dense flows
down a heap (figure 1 a): the fluid layer of granular matter
is moving on a heap of nearly static grains. Two vertical
glass plates (separated by a gap W) confine the grains and
the flow rate is regulated by an external hopper. The pile
slope in a steady flow is self-adjusted as a result of the
stress distribution inside the heap and the friction against
the walls. The velocity profile is composed by an upper
linear part (near the free surface) followed by an exponential

tail deeper inside the granular flow. The distance from the
free surface to the boundary between the two regions is given

by h ∼
(
Q/(d

√
gd)

)1/2
, where d is the grain’s diameters, g is

gravity’s acceleration and Q, the input flux of the granular
material (given as area/time) [6].

The flow is typically assumed as dense which facilitates
to model it using hydrodynamics-like equations. This
characterization raises many difficulties because of the lack
of detailed information on the microscopic behavior of the
grains. Nonetheless, for the description and interpretation
of the experimental results (in particular the velocity profiles)
a simple but powerful method has been used: the dimensional
analysis [5, 7]. The key to apply it is to identify which
are the essential parameters of a particular phenomenon.
Magnitudes related amongst themselves (e.g. density, mass
and volume) are rarely included at a time in the set of
relevant parameters and the goal is obtain a set of independents
magnitudes to describe the physics of the problem. The
following step is to select a set of basic units and search for the
possible dimensionless numbers using the Buckingham’s Pi
theorem, so as to obtain the functional dependencies among
the magnitudes describing the granular medium [8–11].

Previous works [5, 6, 12] have built a local rheology
and developed a “microscopic” model for grain-grain
interactions using dimensional analysis and an empirical
law for the effective friction (µe f f ). The experiments
have revealed that “microscopic” parameters such as grain
friction, shape and effective restitution coefficient, are
somehow included into µe f f [13]. In [12] the authors propose
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that the basics magnitudes controlling these flows are: grain
size (d), normal stress (P), shear stress (τ), shear rate (γ̇) and
effective density of the flow (ρ). The influence of the gravity
and the flow’s height were included in P, τ, and γ̇. From those
parameters they obtained two dimensionless numbers: τ/P
and I = γ̇d/

√
P/ρ. The first one is interpreted as the effective

friction and the second is the ratio of two different timescales
at the grain level: 1/γ̇ and d/

√
P/ρ. In figure 2 appears a

simplified sketch illustrating the meaning of these timescales.
The number I represents the “competition” between the
inertia and the confining effects on grains. Assuming an
empirical expression for µe f f (I), it was possible to find a
Bagnold-like velocity profile for an inclined plane and the
linear velocity profile in the shear plane and in the heap, but
it was not possible to obtain the exponential tail in this last
configuration [5, 6, 12].

Figure 1. Schematic representation of the velocity profile in a heap. a)
A heap confined in Hele-Shaw cell. b) Detail of the velocity profile in a
steady-state granular flow: the upper part is linear; deeper we can find an
exponential tail. We can consider the granular flow as a many layer of grains
slipping one above the other. The z-axis is perpendicular to the paper.

II RESULTS AND DISCUSSION

Our objective is to find the two velocity profiles in a heap
confined between vertical plates under a unique description.
For that, we consider a non-local rheology where an order
parameter (ψ ∈ [0, 1]) is varied to determine the influence
of the static grains on the fluid layer [14]. Granular flow
is regularly thought to be visco-plastic [12], thus the stress
tensor (σ) is modeled as the sum of three components [14]: a
viscous term (ηγ̇), where η is the viscosity, the hydrodynamic
pressure (P) and a stress (τ0)corresponding to the quasi-static

behavior. We can evaluate the influence of this last parameter
through the expression (ψτ0), that we use in the calculation
of σ = ηγ̇+P+ψτ0. Whenψ = 0, the granular flow’s behavior
resembles a viscous flow; if 0 < ψ ≤ 1 and ηγ̇ + P ∼ τ0, we
have a visco-plastic flow, else (ηγ̇ + P � τ0), the flow is in a
quasi-static regimen [13].

Figure 2. Simple diagrammatic of the physical meaning of two different
timescales at the grain level. The interval τshear = 1/γ̇ represents the time
needed by the grains to “climb” over a next particle because of the shear
stress. Other interpretation is the macroscopic time needed for one layer
to travel respect the other. In case of τpressure = d/

√
P/ρ, represent the

time needed by the grain to “fall” into a hole at a lower position due to the
confining pressure.

Finally, we assume (as other authors [5, 14]) that the flow of
grains can be described by the Navier-Stokes equation using
the previous stress tensor. Thus, the parameters that appear
in this equation are the main magnitudes controlling the
properties of the flows. Moreover, we must include the size of
the grain as the only granular lengthscale in the dimensional
analysis. The influence of other lengths related with the
geometry is established either by a macroscopic parameter
like P or a “microscopic” one such as τ0, V (velocity of grains)
or γ̇. Likewise, these parameters determine the effect of the
flow rate variation. As the flows mentioned are described
in a steady state we do not take the time into account. In
summary, the magnitudes employed in the analysis are: d,
g, ρ, V and σ. For different dependences of σ with ψ, we can
obtain the different shapes of the velocity profile.

Case 1: “Visco-plastic” fluid (0 < ψ ≤ 1 and ηγ̇ + P ∼ τ0).

In this flow we can observe two kinds of flowing layers:
one, close to the free surface where the grains behave like
a granular “gas” and another, below the previous layer,
where the grains flows like a liquid, experiencing enduring
contacts [5, 6, 12]. Our analysis concerns the latter.

Here we introduce the magnitude τ0 and we take η as
an independent magnitude in the analysis. The velocity
not only depends on P, but also on the nature of the
“microscopic” inter-grains interaction. Therefore V appears
as an independent parameter as well. Finally, we note
that gravity influences both P and the inter-grains friction.
In conclusion, we use d, ρ, γ̇, P, τ0, η, V and g as our
set of basic magnitudes. In order to diminish the number
of dimensionless combinations we enlarged the number of
basic units, taking into account that the length’s dimension
changes according to the direction, thus, they are Lx, Ly or
Lz [11]. We will use the coordinate system represented in
figure 1 b to denote the x, y and z directions, where the last
one is perpendicular to the paper. We will employ only the
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component of the gravity’s accelerations in the y direction,
because it is an experimental fact that in the x direction the
velocity of the grains flowing in a heap is constant [15] as a
result of the compensation of the effect of the component of
g in this axis and the dissipative shocks between grains.

Then, we have five basic units (the previous plus mass
and time) and we can construct only three dimensionless
numbers: τ0/P, τ0/ρdg and ηγ̇/ρdg. We draw the constancy
of the shear rate (γ̇ = ∂V/∂y) from the following expression:

γ̇ = Ca
ρdg
η

F
(
τ0

P
,
τ0

ρdg
, θc

)
. (1)

Here, Ca is a dimensionless constant and the functional
shape of F is unknown for dimensional analysis. Besides,
the magnitude θc (the angle of repose of the heap) must be
included as another dimensionless number that characterizes
the interactions between grains.

As the height of the flow increases, the friction against
the wall and pressure rises too; we can therefore keep the
assumption about the independence of τ0/P with height of
the fluid layer, based on the fact that the influence of the wall
is taken into account in τ0. Unlike τ0/P, the rate τ0/ρdg
does not include the competition between tangential and
normal tensions, but only the effect of the inter-grain and
grain-wall frictions. In reference [6] the authors conclude:
“The velocity gradient inside the flowing layer is identical
for three different materials (glass, steel and aluminum)”.
That means that the variation of the friction details does not
produce changes: modifications in both P and τ0 can occur
in such a way that their ratio keeps constant independently
from y. We can then conclude that F does not depend
significantly on τ0/ρdg at different heights of the flow. So,
if we integrate (1) over the y direction we obtain a linear
velocity profile.

Case 2: Quasi-static regimen (0 < ψ ≤ 1 and ηγ̇ + P� τ0).

In this configuration the most important mechanism of
interaction between grains is the frictional contact. This
implies that the shear of the creep layer and pressure are
less significant than the grain-grain and grain-wall frictions,
both included in τ0. Again g, d and ρ are relevant to our
scenario. Besides, we take into account the velocity of grains
in this layer and, in order to establish a difference with the
typical velocity V associated to the fluid layer, we named the
former as Vcreep. Although we do not include the shear rate,
it is a matter of fact that there is a velocity gradient along the
height of this layer which we must include in the analysis as
∂Vcreep/∂y. This expression is mathematically identical to γ̇,
but the physical meaning of these magnitudes are different:
∂Vcreep/∂y includes, not only the effect of the shear stress or
the pressure, like γ̇, but also includes the contact friction
between the grains.

Given g, d, ρ, τ0, Vcreep and ∂Vcreep/∂y and the appropriate
number of basic units (five, as before) we can construct just
one dimensionless combination. In the Appendix 1 we show

that only if we use the characteristic size of the grains in
the direction of the y-component of the gravity (along the
height of the layer) we can produce the observed exponential
velocity profile [5, 6, 16]. Using a different direction of the
grain’s typical size entails incorrect functional dependences
as shown in Appendix 1.

The dimensionless number we refer to is
(d/Vcreep)(∂Vcreep/∂y). After integrating this expression we
obtain the profile:

Vcreep ∼ exp
(
Ĉa

y
d

)
, (2)

where Ĉa is a dimensionless constant, that depends of
θc, and the zero of the y axis is taken at the interface
between the flowing and creep layers. In agreement with
the experimental results, in (2) appears that the “attenuation
length” of the velocity is of the order of d.

Our procedure is also corroborated by this fact: when
the grain employed are not spherical but ellipsoidal, the
semi-axis defined as the grain’s “diameter” in order to adjust
the exponential velocity profile, has to be parallel to the
direction along the height of the layer, according to our
selection of the d dimension (Ly) [16].

As a final result, in the Appendix 2 we apply dimensional
analysis to another geometries that had been extensively
studied, and we obtain the same velocities profiles reported
in the literature for these configurations [5, 11].

CONCLUSIONS

With all these results we can do an interpretation of
the transition between one velocity profile functional
dependence to the other, which is an outcome of the variation
of granular packing. The experimental validation can be
done in the flow on a heap because two velocity profiles
coexist. It is reported that the volume fraction is much higher
in the creep layer (which is, besides, roughly constant here)
than in the flowing layer (which decreases quickly) [5]. Thus,
in the former layer are more significant the effects of the forces
between grains, which is considered here through the values
of the order parameter ψ.

Using dimensional analysis we have been able to reproduce
the velocity profile experimentally reported for granular
flows down a confined heap for the flowing layer and the
creep layer underneath: the grains velocity first decreases
linearly from the free surface, and then exponentially.

Our choice of parameters for the dimensional analysis of the
flowing layer is based on the experimental fact that there the
interactions between grains occurs via collisions and shear.
In the case of the creep layer, we assume that the interactions
are mainly frictional, which is expected from the higher, and
constant, packing fraction in that region.
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discussions and comments.

APPENDIX 1: DETAILS OF THE DIMENSIONAL
ANALYSIS

Case 1 (fluid layer in the heap)

Magnitudes: V, γ̇, η, τ0, g, d, ρ.

Fundamentals dimensions: Lx, Ly, Lz, T, M.

Dimensional matrix (Table 1).

Table 1. Table to obtain the dimensional matrix for case 1. The matrix is
constructed by selecting columns of the table in different, physically sound,
combinations. We only consider related combinations: in our case, those
between viscosity and shear stress.

V γ̇ η τ0 g d ρ
I II III I II III I1 II1 III1

Lx 1 1 -2 -1 -1 -1 0 0 0 1 0 0 -1
Ly 0 -1 1 0 1 0 -1 0 1 0 1 0 -1
Lz 0 0 0 0 -1 0 0 -1 0 0 0 1 -1
T -1 -1 -1 -1 -1 -2 -2 -2 -2 0 0 0 0
M 0 0 1 1 1 1 1 1 0 0 0 0 1

Rank: 4, for the combinations III-I1 and III-II1; 5 for the other
ones. Just in the combination I-III1 the magnitudes V and
γ̇ appears in only one of the two dimensional number that
could be formed. For the other combinations these variables
appear in both dimensional numbers and we can’t determine
completely the functional dependence of the velocity profile.

Dimensionless number, without V and γ̇, for the combination
I-III1:

τ0

ρdg
.

Dimensionless number, with V and γ̇, for the combination

I-III1:
ηγ̇

ρdg
.

Case 2 (creep layer in the heap)

Magnitudes: Vcreep,
∂Vcreep

∂y
, τ0, g, d, ρ.

Fundamentals dimensions: Lx, Ly, Lz, T, M.

Dimensional matrix (Table 2).

Table 2. Table to construct the dimensional matrix for case 2.

Vcreep
∂Vcreep
∂y τ0 g d ρ

I II III I1 II1 III1

Lx 1 1 -1 0 0 0 1 0 0 -1
Ly 0 -1 0 -1 0 1 0 1 0 -1
Lz 0 0 0 0 -1 0 0 0 1 -1
T -1 -1 -2 -2 -2 -2 0 0 0 0
M 0 0 1 1 1 0 0 0 0 1

Rank: 4, for the combinations III-I1 y III-II1; only in the first
one is possible construct two dimensionless number where
in only one appears V and γ̇. 5 is the rank for the others
combinations.

Dimensionless number for the combination I-I1, II-I1:
d2g

Vcreep
3

∂Vcreep

∂y
.

Dimensionless number for the combination I-II1, II-II1:
d

Vcreep

∂Vcreep

∂y
.

Dimensionless number for the combination I-III1:
dρg
τ0

.

Dimensionless number for the combination II-III1:
ρ2d2

τ2
0

∂Vcreep

∂y
Vcreepg.

Dimensionless number for the combination III-III1:

ρ2gVcreep
3
(
∂Vcreep

∂y
τ0

2

)−1

.

Dimensionless number, without Vcreep and
∂Vcreep

∂y
, for the

combination III-I1:
dρg
τ0

.

Dimensionless number, with
∂Vcreep

∂y
, for the combination

III-I1:
d2g

Vcreep
3

∂Vcreep

∂y
.

APPENDIX 2: OTHER FLOW GEOMETRIES

There are other two relevant configurations (figure 3) where a
simple shear flow is produced and its rheological properties
can be measured [6, 12].

The most simple of these geometries is the plane shear (figure
3 a): the shear is produced by the motion of the upper wall.
For reasons of simplicity the influence of the gravity (g) is
neglected and thereby the stress distribution is uniform in all
the extension of the fluid [6, 12]. The velocity of the grains
increases linearly in proportion to the height of the fluid layer.

Another well studied configuration is the flow on inclined
plane (figure 3 b and c), which is frequent in both geophysical
and industrial circumstances. The set-up is a rough and
rigid plane at an angle (θ) over the horizontal and the flow
rate is controlled through the opening of a gate fixed at the
top of the plane. The experiments are conducted in such
a way that the motion of the grains is stationary: in the
steady-state, a uniform flow of height (h) is established and
gravity acts as the driving force. The density (ρ) is assumed
constant and the stress distributions are σtan = ρgh sin(θ) and
σnor = ρgh cos(θ): the former characterizes the tangential
stress and the latter, the normal stress. The velocity profile
in the flow for big h is a Bagnold-like profile (V ∼ h3/2) and
for small h the shape of the profile is linear.

In all cases the flow is also regarded as dense, therefore
the description is regularly conducted from a hydrodynamic
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perspective, besides we follow the same method presented
in the paper to describe the velocity profile on a heap.

Figure 3. Another two common configurations to characterize granular
flows. a) Plane shear, b) incline plane with a big height of the fluid layer and
c) incline plane with a thin fluid layer. The dark spots are grains represented
in two distinct time instants.

Case 1A: “Viscous” fluid (ψ = 0).

Geometry: Plane shear.

Gravity is not included and the information about the
velocity of grains and the viscosity are contained in P and
γ̇ [5,6,17]. This means that the magnitudes involve are d, ρ, γ̇
and P. We take as basic units: length (L), mass (M), and time
(T). This makes possible to find the number I and obtain the
linear velocity profile experimentally reported [5, 6, 12].

Geometry: Inclined plane (big h)

The only difference with the previous geometry is in P. Here
its value is not constant as in the plane shear, though it
still contains the information about the height of the flow
(implicitly, the velocity) and gravity (P ∼ ρgh). Once again,
the magnitudes are d, ρ, γ̇ and P, the basic units are the same
as before, so we can obtain the number I and the Bagnold-like

profile as has been reported before [6,11]. The incline angle is
a dimensionless magnitude on which the number I relies, but
this functional relation can’t be established by dimensional
analysis.

Case 2A: “Visco-plastic” fluid (0 < ψ ≤ 1 and ηγ̇ + P ∼ τ0).

Geometry: Incline plane (small h)

The dependence here is the same as that obtained for the
fluid region in the heap: a linear profile. We can interpret
this result as follows: as the height of the flow is small, the
action of the rough bottom is significant and acts as a source
of frictional forces that affects at the most part of the flowing
grains. For this reason appears explicitly the magnitude τ0
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