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In this paper, we study the effect of AC electric field on the
onset of electrohydrodynamic instability in a viscoelastic fluid layer
saturating a porous medium caused by dielectrophoretic force due
to variation in the dielectric constant with temperature. Walters’
(model B’) fluid model is used to describe the behaviour of a
viscoelastic dielectric fluid and for porous medium, Darcy model
is employed. The fluid layer is induced by the dielectrophoretic
force due to the variation of dielectric constant with temperature.
We derive the dispersion relation describing the influence of
viscoelasticity, Darcy number and AC electric field by applying
linear stability theory and normal mode analysis method. It is
observed that Walters’ (model B’) fluid behaves like an ordinary
Newtonian fluid in the stationary convection whereas Darcy number
and AC electric field have destabilizing effect on the stationary
convection. The present results are in good agreement with the
earlier published results.

En este artı́culo estudiamos el efecto de un campo eléctrico
alterno en la aparición de la inestabilidad electrohidrodinámica en
una capa de un fluido viscoelástico que satura un medio poroso,
causada por la fuerza dielectroforética debido a la variación de
la constante dieléctrica con la temperatura. Se usa el modelo de
Walter (modelo B’) para describir el comportamiento de un fluido
dieléctrico viscoelástico y, para el medio poroso, el modelo de
Darcy. La capa fluı́da es inducida por la fuerza dielectroforética
debida a la variación de la constante dieléctrica con la temperatura.
Derivamos la relación de dispersión que describe la influencia
del número de Darcy de la viscoelasticidad y el campo eléctrico
alterno aplicando la teorı́a de estabilidad lineal y el método de
análisis de modo normal. Se observa que el fluido que sigue el
modelo B’ se comporta como un fluido Newtoniano ordinario en
la convección estacionaria, mientras que el número de Darcy y el
campo eléctrico alterno tienen un efectos desestabilizante sobre la
convección estacionaria. Estos resultados están en concordancia
con resultados previamente publicados.

PACS: Electrohydrodynamics, 47.65.-d, non-Newtonian, 47.50.-d, fluid dynamics, 47.53.+n, through porous media, 47.56.+r

I. INTRODUCTION

The study of Newtonian fluid heated from below saturating
a porous medium has attracted many researchers for the last
few decades as it has various applications in geophysics,
food processing, oceanography, soil sciences, ground water
hydrology, astrophysics etc. Chandrasekher [1] discussed
thermal instability of Newtonian fluid under the various
assumptions of hydrodynamics and hydromagnetics. A good
account of thermal instability problems in a porous medium
is given by Wooding [2], Ingham and Pop [3], Vafai and
Hadim [4] and Nield and Bejan [5].

Recently, the study of electrohydrodynamic instability
in dielectric fluid attracts many researchers because it
has various applications in climatology, oceanography,
EHD enhanced thermal transfer, EHD pumps, EHD
in microgravity, micromechanic systems, drug delivery,
micro-cooling system, nanotechnology etc. Chen et al.
[6] discussed the applications of electrohydrodynamics in
brief. They said that EHD heat transfer came out as
an alternative method to enhance heat transfer, which
is known as electrothermohydrodynamics (ETHD). Many

researchers have been studied the effect of AC or DC
electric field on natural convection in a horizontal dielectric
fluid layer by taking different types of fluids. The onset
of electrohydodynamic convection in a horizontal layer
of dielectric fluid was studied by Landau [7], Robert [8],
Castellanos [9], Lin [10], Gross and Porter [11], Turnbull [12],
Maekawa et al. [13], Smorodin and Velarde [14], Galal [15],
Rudraiah and Gayathri [16] and Chang et al. [17]. Takashima
and Ghosh [18] studied the electrohydrodynamic instability
in a viscoelastic liquid layer and found that oscillatory modes
of instability exist only when the thickness of the liquid
layer is smaller than about 0.5 mm and for such a thin
layer the force of electrical origin is much more important
than buoyancy force while Takashima and Hamabata [19]
studied the stability of natural convection in a vertical layer
of dielectric fluid in the presence of a horizontal AC electric
field.

In these fluids, an applied temperature gradient produces
non-uniformities in the electrical conductivity and the
variation of the electrical conductivity of the fluid with
temperature produces free charges in the bulk of the fluid.
These free charges interacting with applied or induced
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electric field produce a force that causes fluid motion. On the
other hand, when there is variation in dielectric permitivity
and the electric field is intense then the polarization force
which is induced by the non-uniformity of the dielectric
constant causes fluid motion. In either case, convection can
occur in a dielectric fluid layer even when the temperature
gradient is stabilizing.

Reiner [20] and Walters’ [21] developed the non-linear
constitutive equations for non-Newtonian compressible and
incompressible fluid respectively. Green [22] was the first
who studied the problem of convective instability of a
viscoelastic fluid heated from below while Vest and Arpaci
[23] studied the problem of overstability of a viscoelastic
fluid. With the growing importance of non-Newtonian fluids
having applications in geophysical fluid dynamics, chemical
technology and petroleum industry attracted widespread
interest in the study on non-Newtonian fluids. One such
type of fluids is Walters’ (model B’) elastico-viscous fluid
having relevance in chemical technology and industry. A
good account of thermal instability problems of Walters’
(Model B’) fluid in porous medium has been studied by
Sharma and Rana [24], Gupta and Aggarwal [25], Rana and
Kumar [26], Rana and Jamwal [27], Rana et al. [28], Rana and
Chand [29] and Rana et al. [30].

The main aim of this paper is to study the effect of uniform
AC electric field and Darcy number on the onset of instability
of viscoelastic Walters’ (model B’) fluid layer. To the best of
my knowledge, this problem has not been studied as yet.

II. MATHEMATICAL MODEL

We consider an infinite horizontal layer of an incompressible
Walters’ (model B’) viscoelastic fluid of thickness d saturating
a porous medium, bounded by the planes z = 0 and z = d.
The fluid layer is acted upon by a gravity force g = (0, 0,−g)
aligned in the z direction and the uniform vertical AC
electric field applied across the layer. The lower surface is
grounded and the upper surface is kept at an alternating
potential (60 Hz) whose root mean square value is φ. The
temperature T at the lower and upper boundaries is assumed
to take constant values T0 and T1 (< T0) respectively. The
Darcy law is assumed to hold and the Oberbeck-Boussinesq
approximation is employed (see Figure 1).

Figure 1. Physical configuration of the problem

III. GOVERNING EQUATIONS

Let ρ, µ, µ′, φ, p, K, q(u, v,w), g, T, κ, A and E denote
respectively, the density, viscosity, viscoelasticity, medium
porosity, pressure, dielectric constant, Darcy- velocity vector,
acceleration due to gravity, temperature, thermal diffusivity,
ratio of heat capacity and the root-mean-square value
of electric field. The equations of conservation of mass,
momentum and thermal energy for Walters’ (model B’)
elastic-viscous fluid (Chandrasekhar [1], Walters’ [21],
Takashima and Ghosh [18], Sharma and Rana [24], Robert [8]
and Rana et al. [30]) are

∇ · q = 0, (1)

ρ

φ

dq
dt

= −∇P + ρg −
1
k1

(
µ − µ′

∂
∂t

)
q −

1
2

(E · E)∇K, (2)

A
∂T
∂t

+ (q · ∇)T = κ∇2T, (3)

where d/dt = (∂/∂t) + (1/φ)(q · ∇) stands for convection
derivative and

P = p −
ρ

2
∂K
∂ρ

(E · E) (4)

is the modified pressure.

Since the driving force (dielectrophoretic force) is strictly
speaking periodic, the stationary state solution to the system
1-4 is not time independent. To keep it simple, neglecting the
nonlinearities in the system 1-4 a rough estimate of the order
of magnitude of the terms involving time derivatives gives

q ' q0, ρ
∂q
∂t

= 2ρωq0, µ
′
∂q
∂t

= 2µ′ωq0 and A
∂T
∂t

= 2AωT0,

where q0 and T0 are respectively, a characteristic velocity and
temperature of the problem, and ω is the frequency of the
forcing.

The Coulomb force term ρeE, where ρe is the free
charge density, is of negligible order as compared with
the dielectrophoretic force term for most dielectric fluids
in a 60-Hz AC electric field. Thus, we retain only the
dielectrophoretic term, i.e., last term in equation 2 and
neglect the Coulomb force term. Furthermore, the electrical
relaxation times of most dielectric liquids appear to be
sufficient long to prevent the build up of free charge at
standard power line frequencies. At the same time, dielectric
loss at these frequencies is very low that it makes no
significant contribution to the temperature field. It is also
seen that the dielectrophoretic force term depends on (E · E)
rather than E. As the variation of E is so speedy, the
root-mean-square value of E is used as effective value in
determining the motion of fluids. So we can consider the AC
electric field as the DC electric field whose strength is equal
to the root mean square value of the AC electric field.

A charged body in an electric field tends to move along the
electric field lines and impart momentum to the surrounding
fluid. The Maxwell equations are

∇ × E = 0, (5)
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∇ · (KE) = 0. (6)

In view of Eq. 5, E can be expressed as

E = −∇V, (7)

where V is the root mean square value of electric potential.
The dielectric constant is assumed to be linear function of
temperature and is of the form

K = K0[1 − γ(T − T0)], (8)

where γ > 0 , is the thermal coefficient of expansion of
dielectric constant and is assumed to be small.

The equation of state is

ρ = ρ0[1 − α(T − T0)], (9)

where α is coefficient of thermal expansion and the suffix
zero refers to values at the reference level z = 0.

IV. BASIC STATE

The basic state of the system is taken to be quiescent layer
(no settling) and is given by

q = qb(z), P = Pb(z), T = Tb(z), E = Eb(z),

K = Kb(z), and ρ = ρb(z),
(10)

where the subscript b denotes the basic state.

Substituting equations given in 10 in Eqs. 1 – 9, we obtain

0 = −∇
Pb

ρ0
+
ρb(z)
ρ0

g −
1

2ρ
E2
∇K, (11)

∂2Tb(z)
∂z2 = 0, (12)

Kb(z) = K0[1 − γ(Tb − T0)], (13)

ρb(z) = ρ0[1 − α(Tb − T0)], (14)

∇ · (KbEb) = 0. (15)

Solving Eq. 12 by using the following boundary conditions

Tb(z) = T0 at z = 0 and Tb(z) = T1 at z = 1, (16)

we obtain

Tb = T0 − ∆T
z
d
. (17)

In view of Eq. 15 and noting that Ebx = Eby = 0, it follows that

KbEbz = K0E0 = constant (say). (18)

Then

E = Eb(z) =
E0

1 + γ∆T z
d
. (19)

Hence

Vb(z) = −
E0d
γ∆T

log(1 + γ∆T
z
d

), (20)

where E0 = −
V1γ∆T/d

log(1 + γ∆T)
, (21)

is the root-mean-square value of the electric field at z = 0.

V. PERTURBATIONS SOLUTIONS

To study the stability of the system, we superimposed
infinitesimal perturbations on the basic state, so that

q = q′, T = Tb + T′, E = Eb + E′,

ρ = ρb + ρ′ K = Kb + K′, and P = Pb + P′,
(22)

where q′, T′, E′,ρ′, K′ and P′ be the perturbations in q, T, E,ρ, K
and P respectively. Substituting Eq. 10 in Eqs. 1 – 9, linearizing
the equations by neglecting the product of primed quantities,
eliminating the pressure from the momentum Eq. 2 by
operating curl twice and retaining the vertical component
and non-dimensionalizing the resulting equations by

(x∗, y∗, z∗) =
[x, y, z

d

]
, q∗ =

d
κ

q, t∗ =
κ

d2 t,

T∗ =
1

∆T
T and V∗ =

1
γE0∆Td

V.

Neglecting the asterisk for simplicity, we obtain the linear
stability equations in the form[

1
Pr

∂
∂t + 1

Da

(
1 − F ∂

∂t

)
∇

2
]
∇

2w = Rat∇
2
hT + Rae∇

2
h

(
T − ∂V

∂z

)
, (23)

[
∂
∂t
− ∇

2

]
T = w, (24)

∇
2V =

∂T
∂z
, (25)

where we have used dimensionless parameters as:

Pr =
νφ

κ
, F =

µ′

µ
and Da =

k1

d2 (26)

Rat =
gα∆Td3

νκ
(27)

Rae =
γ2K0E2

0(∆T)2d2

µκ
(28)

The parameter Pr is the Prandtl number, F is the
viscoelasticity parameter, Da is the Darcy number, Rat is the
familiar thermal Rayleigh number and Rae is the AC electric
Rayleigh number.

Now we assume that the temperature at the boundaries
is kept fixed, the fluid layer is confined between
two boundaries. The boundary conditions appropriate
(Chandrasekhar [2], Takashima and Ghosh [18], Rana and
Jamwal [27] and Rana et al. [30] to the problem are

w =
∂2w
∂z2 =

∂V
∂z

= 0, T0 or DT = 0. (29)
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VI. LINEAR STABILITY ANALYSIS

Using normal mode analysis method, we assume that the
perturbation quantities have x, y and t dependence of the
form

[w,T,V] = [W(z),Θ(z),Φ(z)] exp(ılx + ımy + σt), (30)

where l and m are the wave numbers in the x and y
direction, respectively, and σ is the complex growth rate of
the disturbances.

Substituting Eq. 30 in Eqs. 23 – 25 and 29, we get[
ω
Pr + 1

Da (1 − Fσ)
]

(D2
− a2)W = −Rata2Θ + Raea2(Θ −DΦ), (31)

[Aω − (D2
− a2)]Θ = W, (32)

(D2
− a2)Φ = DΘ, (33)

W = D2W = DΦ = 0, Θ = 0, or DΦ = 0, (34)

where a2 = l2 + m2 and D = d/dz.

Eqs. 31 – 33 form an eigenvalue problem for Rat or Rae and σ
with respect to the boundary conditions 34.

We assume the solution to W, Θ, Φ and Z of the form

W = W0 sinπz, Θ = Θ0 sinπz and Φ = Φ0 sinπz, (35)

which satisfy the boundary conditions of Eq. 34. Substituting
Eq. 35 into Eqs. 31 – 33, we obtain the following matrix
equation


[
ω
Pr + 1

Da (1 − Fσ)
]

J2
−a2(Rat + Rae) −Raea2π

−1 Aσ + J2 0
0 π J2


 W0

Θ0
Φ0

 =

 0
0
0

 where J2 = π2 + a2 is the total wave number. (36)

The linear system 36 has a non-trivial solution if and only if∣∣∣∣∣∣∣∣
[
ω
Pr + 1

Da (1 − Fσ)
]

J2
−a2(Rat + Rae) −Raea2π

−1 Aσ + J2 0
0 π J2

∣∣∣∣∣∣∣∣ = 0,

which yields

Rat =
J2(J2 + Aσ)

a2

[
σ
Pr

+
1

Da
(1 − σF)

]
−

a2

J2 Rae. (37)

Eq. 37 is the dispersion relation accounting for the effect of
Prandtl number, electric Rayleigh number, Darcy number
and kinematic viscoelasticity parameter in a layer of Walters’
(model B’) viscoelastic dielectric fluid.

VII. STATIONARY CONVECTION

For stationary convection, putting σ = 0 in equation 37
reduces it to

Rat =
(π2 + a2)2Da−1

a2 −
a2

π2 + a2 Rae. (38)

Eq. 38 expresses the thermal Rayleigh number as a function of
the dimensionless resultant wave number a, the parameters
electric Rayleigh number and Darcy number Da. It is found
that the kinematic viscoelasticity parameter F vanishes with
ω and the Walters’ (model B’) viscoelastic dielectric fluid
behaves like an ordinary Newtonian dielectric fluid. Eq. 38 is
in good agreement with the equation obtained by Roberts [8].

In the absence of AC electric field (i. e., when Rae = 0), Eq. 38
reduces to

Rat =
(π2 + a2)2Da−1

a2 . (39)

To study the effect of AC electric field on
electrohydrodynamic stationary convection, we examine the
behaviour of ∂Rat/∂Rae analytically. From Eq. 38, we obtain

∂Rat

∂Rae
= −

a2

π2 + a2 , (40)

which is negative implying thereby AC electric field hastens
the electroconvection, implying thereby AC electric field has
destabilizing effect on the system which is in an agreement
with the results derived by Takashima and Ghosh [18] and
Rana et al. [30]. Also Eq. 38 yields

∂Rat

∂Da
= −

(π2 + a2)2Da−2

a2 , (41)

which is negative implying thereby Darcy number hastens
the electroconvection, implying thereby Darcy number has
destabilizing effect on the system which is in good agreement
with the results derived by Sharma and Rana [24], Gupta and
Aggarwal [25], Rana and Kumar [26], Rana and Jamwal [27]
and Rana et al. [30].

The dispersion relation 38 is analysed numerically. Graphs
have been plotted by giving some numerical values to the
parameters, to depict the stability characteristics.

In Figure 2, the thermal Rayleigh number Rat is plotted
against dimensionless wave number a for different values
of electric Rayleigh number Rae as shown. This shows that
as Rae increases the thermal Rayleigh number Rat decreases.
Thus AC electric field has destabilizing effect on stationary
convection which is in good agreement with the result
obtained analytically from Eq. 40.

In Figure 3, the thermal Rayleigh number Rat is plotted
against dimensionless wave number a for different values
of Darcy number Da as shown. This figure depicts that as
Darcy number Da increases the thermal Rayleigh number Rat
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decreases. Therefore, Darcy number has destabilizing effect
on the stationary convection which is in good agreement with
the result obtained analytically from Eq. 41.

Figure 2. Dependence of the thermal Rayleigh number Rat on the wave
number a while varying Rae.

Figure 3. Dependence of the thermal Rayleigh number Rat on the wave
number a varying Da.

VIII. CONCLUSIONS

The effect of AC electric field on the onset of instability
of Walters’ (model B’) viscoelastic dielectric fluid layer
heated from below saturating a porous medium has
been studied for the case of free-free boundaries by
using linear stability analysis based on normal modes.
For the case of stationary convection, the non-Newtonian
electrohydrodynamic Walters’ (model B’) viscoelastic
dielectric fluid behaves like an ordinary Newtonian fluid. AC
electric field and Darcy number both hastened the onset of
electrohydrodynamic stationary convection as ∂Rat/∂Rae and
∂Rat/∂Da indicating that the thermal Rayleigh number Rat is
decreasing function of both electric Rayleigh number Rae and
Darcy number Da. Hence, AC electric field and Darcy number
both have destabilizing effect on the stationary convection.
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