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Numerical modeling of human cornea has paramount importance
to test in silica surgical procedures and to understand the effect
on human eyes of injuries and other external aggressions. To
prepare a numerical model that could reproduce correctly corneal
behavior, it is necessary firstly to select a type of elastic material
and its mechanical model of response. Then a numerical procedure
must be implemented; normally FEM is used for calculations. It is
then necessary to select geometry, create a mesh and calculate
the elastic constants of the model. In the present contribution we
create a model based in Mooney Rivlin hyperelasticity, with a mesh
consisting in three layers and eleven elements per meridian from
the apex to limbus. Two geometries were tested: cornea fixed by
limbus and a second one formed by cornea, corneal limbus and part
of sclera. We also prepared and tested the numerical procedure for
establishing the stress free configuration.

La modelacién numérica del comportamiento de una cérnea
humana es importante para simular computacionalmente
procedimientos quirdrgicos sobre esta, asi como la accién de
agentes externos agresivos. Un modelo numérico que reproduzca
de manera fiel el comportamiento de la coérnea debe basarse en
un tipo de elasticidad del material que la compone. Las constantes
del material se determinan ajustando el modelo a experimentos.
A continuacién se implementa un modelo numérico, basado por lo
general en elementos finitos. Debe escogerse una geometria, las
condiciones de frontera que se deben cumplir y una malla para
discretizar las ecuaciones continuas. En este trabajo presentamos
la creacion de un modelo de cérnea, basado en un material que
cumpla las condiciones de material hiperelastico de tipo Mooney
Rivlin, sustentado en una malla de tres capas y once elementos
por meridiano (del apice al limbo). Las geometrias utilizadas fueron
una cornea fija por el limbo y una segunda formada por la cérnea,
el limbo y parte de la esclera. Se establecié el procedimiento para
determinar la configuracion libre de estrés de la cérnea.

PACS: Biomaterials (Biomateriales), 87.85.J; physical properties of biomaterials (propiedades fisicas de los biomateriales), 87.85.jc; finite

element analysis (andlisis de elementos finitos), 02.70.Dh

I. INTRODUCTION

The human cornea is a transparent membrane (a concave
meniscus) responsible of two thirds (around +43 D) of the
refracting power of human eyes [1]. This explains why
cornea is a preferred zone for refractive surgery to correct
myopia, hyperopia etc. At the same time any pathology
or physical trauma affecting it has a repercussion in the
optical quality of the eye. Cornea also works as a protective
structure for inner tissues and intraocular humors [2].
Structurally, it is composed of proteins and well-structured
cells, fed through tears and aqueous humor. Cornea could
be divided in five distinct layers: Epithelium, Bowman’s
Membrane, Stroma, Descemet Membrane and Endothelium.
Mechanically speaking, Stroma is the most important layer
comprising bundles of collagen fibrils, which provide most
of corneal mechanical and optical characteristics [3].

In order to understand how the corneal surgery works, it is
essential to study its mechanical behavior, when submitted to
external actions. Finite Element Method (FEM) is a numerical
tool that allows investigating different surgical techniques,
and also understanding the drawbacks of each surgical
procedure [2-5].

In order to perform the numerical research, previous

calculations must be performed for preparing the
computational model.
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Firstly, a physical model of the mechanical response of cornea
has to be chosen. Once the model has been selected, its
parameters have to be calculated running the model to fit
experimental data, normally a stress — strain curve.

It is also fundamental to study the corneal geometry used in
the modeling, because its form and the boundary conditions
influence the outcome of the numerical method.

In order to run the numerical model, a mesh must be selected
that guaranties a fast convergence of the procedure and
enough precision in the results for an adequate comparison
with experimental data.

To complete the task, a stress free configuration of the cornea
must be calculated [4].

The present contribution summarizes the results of the first
stage of a research performed at the request of the Cuban
Institute of Ophthalmology “Ramén Pando Ferrer”. The aim
of the research is to create a computational model of a human
cornea suitable for medical research. Present stage intends to
create the computational model.

The objectives are:

= Using published data [5] of stress — strain in human
corneas, to compare the performance of two mechanical
models, Mooney — Rivlin of five parameters (MR5)
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and Ogden of three parameters (Og3) to predict the
refractive power of cornea in different situations.

= Finding an optimal mesh for the mechanical modeling.

= To determine the stress free configuration of cornea as
starting point to model a cornea at 15 mmHg.

= To study the influence of the boundary conditions,
using a cornea fixed by the limbus and a partial ocular
globe formed by cornea, limbus ring and part of sclera.

FEM calculations were performed in ANSYS 18.1.

II. MATERIALS AND METHODS

Corneal elasticity: Corneal tissue shows a highly nonlinear
behavior [6] but in a range of intraocular pressures (I0P),
between 10 and 25 mmHg, the tissue response is quasi linear,
allowing to use a simplification. In this case, it is possible to
use a hyperelastic model of Stroma [7-9], and consider it as
incompressible, due to its high water content [10].

The principal characteristic of a hyperelastic material is the
existence of a Helmholtz free energy function i per unit of
reference volume. In this case the work performed to change
the system only depends on its state in the initial and final
configurations. For homogeneous materials, ¢ depends only
on the deformation gradient tensor F and the Cauchy stress
tensor is determined as [11]

S YE) o
o= <1>
Here | = det(F). This is the constitutive equation of a
hyperelastic material. To apply it, you must choose a model
for the material, use the energy density function 1(F) that
corresponds, and calculate ¢. For isotropic incompressible
materials

Y(F) =

lybiso(C) - P(] - 1)/ (2)

where C is the right Cauchy - Green tensor and p is
a Lagrange multiplier chosen high enough to warrantee
incompressibility (J = 1). The second Piola — Kirchhoff tensor
is

IY(C)

S=2——"—".

aC ®)

When C is expressed only through its invariants

C[ovan, L YL
S_Z{a_h%+a_lzx+a_l3% , (4)

and
o =] 'FSF’, &)

Using Cauchy tensor and the material properties, it is
possible to calculate the system deformations. With the
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principal values of Cauchy stress tensor it is also possible
to calculate von Mises stress [12]

(6)

Two models used frequently to study the human cornea and
other biomaterials are Ogden and Mooney Rivlin ones [11].

Ogden model postulates a dependence of the energy density
function on the principal stretches A1, Ap, A3 as [11]

NNP

A1, Az, A3)
P(A1, A2, Az acp

P+ Ay - 3) )

p=1

where Up, &y are constants of the model and N is the order of
the model. It has been demonstrated that with N = 3 (Og3)
is possible to give a very good agreement with experimental
data of rubber and biomaterials [11].

Mooney Rivlin model is derived from Ogden, and is
expressed in terms of the first two strain invariants I, I,

(I, 1) = Zcz]al 3) <12—3>f+2 - -1 (®)
i+j=1
Here d; are Lagrange multipliers that guarantee

incompressibility and C;; are constants of the model. The
model with five parameters (MR5, N = 2) gives also very
good agreement with experimental data

I11)(11112) =

Cio(I1 = 3) + Cor(I2 = 3) + C11(I1 = 3)(I — 3)+

9
+ Cyo(ly ®

1
—3)* + Coa(l - 3 + E(] -1
In both models, in order to determine the value of the
constants, it is necessary to fit an experimental stress — strain
curve.

Boundary conditions: The ocular globe is constituted by
the union of cornea and sclera. Both are connected by the
limbus, which also has hyperelastic characteristics. It means
that can sustain finite deformations. But for modeling cornea,
it is possible to consider the limbus as a fixed ring. It is
related with the fact that for the inflation tests performed
to determine its mechanical properties, the cornea is fixed by
a clamp that avoids any displacement of limbus [12].

Another approach is to consider the whole ocular globe,
modeling the sclera also as a Mooney Rivlin hyperelastic
material [13]. In this case the fixation of the ocular globe
could be accomplished by a box of adipose tissue or by the
muscles that control and attach the eye [14]. Corneal response
will depend on the form of the boundary chosen.

Another important condition that partially determines
corneal behavior is the action of IOP. This is normal pressure
acting on the Endothelium, with a mean value (for healthy
eyes) of 15 mmHg (2000 Pa).
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1I.1.  Selection of the mesh

The selection of an adequate mesh is necessary to guarantee
the quality of the results in FEM modeling. In order to achieve
it, is important to prepare a mesh with a large density of
elements for obtaining exact results.

Unfortunately, an increment in the density of elements
is accompanied by an increment in the computational
requirements and in the time consumption for obtaining
the solution of the model. It is necessary to find an
intermediate solution that encompasses high precision and
low computational demands. To achieve this result, we have
optimized the corneal mesh varying two parameters: the
number of element layers in the cross section of the cornea
(radial direction) and the number of elements of the corneal
principal meridians located in its anterior surface [4].

In both cases the control parameter to evaluate the results
is the corneal optical power. To understand this it must be
taken into account that the refracting power of cornea is its
principal function.

The optimization procedure is as follows: Keeping a constant
number of elements in each surface, the optical power is
calculated with the computational model of [15] for a cornea
composed by different number of layers, starting by one, up
to seven.

Once the number of layers is determined, it remains fixed.
Then we change the number of elements in the principal
meridians. Beginning with five elements in the meridian line
from apex to limbus, we increased it up to 23, calculating the
optical power for each value.

11.2.  Stress free configuration of cornea

To simulate the mechanical behavior of cornea, sometimes
the experimental data used to calculate the constants of the
model are measured in vivo, which means that the structure
of the cornea is under the effect of stresses as the IOP, so
it is deformed. This deformed configuration is not suitable
for mechanical modeling, because when the model applies
pressure the corneal structure will show a larger deformation,
different from the real one [4].

An approach used to solve this problem is to calculate the
stress free configuration, i. e. the form that the cornea would
show if the IOP is removed [3,4]. It consists in an iterative
procedure where normal IOP is applied to the measured
deformed configuration Xy and the resulting deformation
is subtracted from X, to obtain the first approximation Xj to
the stress free form. This is submitted again to IOP and the
resulting configuration is subtracted from X;. This difference
is subtracted from Xy to obtain X,. This process continues
until it converges to a stress free form that after submitted
to IOP gives the original configuration X, or a configuration
that differs from the real one an amount impossible to detect
by the human optical system [4].
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III. RESULTS AND DISCUSSION

IIL.1.  Selection of the mechanical model

Using the stress — strain curves of [5] in order to determine
the parameters of the two material models to be tested, it is
possible to reproduce numerically the outcome of an inflation
test. The fitting procedure to calculate the parameters is
implemented in ANSYS.
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Figure 1. (color online) Deformation response of a human cornea,
comparing the prediction of the two models (MR5, red circles, Og3, blue
triangles) with the experiments of [5] (full black squares).

Fig. 1 shows the response of the modeled cornea using MR5
and Og3 as compared with experimental results [5].

The abscissa is the apical displacement, defined as the
total displacement of the apical point of anterior surface of
cornea, and the ordinate is the pressure applied to it. The
range shown goes far beyond the physiologically attainable
pressures, but is good to make the test. The experimental
data [5] was obtained from an in vitro inflation experiment;
that is how the large range of pressures was obtained. In
experimental in vivo studies values between 10 and 30 mmHg
has been found [16].

From this figure it is possible to see that MR5 reproduces
better the experimental data, when pressures from 0 to 140
mmHg are considered. It also occurs in the physiologically
important range from 10 to 40 mmHg. To check this,
the distance between our calculations and [5] data was
determined using the L? norm. The results confirm the visual
appreciation: in the whole range of pressures L2[Exp—0g3] ~
7L2[Exp — MR5]. If we restrict calculations to pressures below
40 mmHg, results are closer, but again L*[Exp — Og3] >
L?*[Exp — MR5]. We are interested in a model that describes
the deformation response of human cornea at any pressure
s0, in what follows, MR5 will be used.

II1.2.  Formulation of the Finite Element model

In Fig. 2 the relative variation of the refractive power with
the number of layers in the cross section of cornea is shown.

A fast decrement of the error is observed, and then the value
stabilizes in the interval from three to five layers (around
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7%107°). So, in spite of the ulterior decrement of error, three
layers are enough for achieving a good precision in the value
of refractive power.
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Figure 2. Relative variation of the corneal power with the increase of the
number of layers in the cross section.

Similar behavior is obtained in the analysis of the dependence
of the relative error of pressure with the number of elements
in the half meridians, Fig. 3.
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Figure 3. Relative variation of the corneal power with the increase of the
number of sectors in the meridians.

When the number of elements changes from five to eight, the
error diminishes one order of magnitude; ulterior changes
(up to 23) provoke small reductions. At 11 layers the relative
change of pressure reaches its minimum and this is the
number of sectors selected.

Once determined the mesh, the stress free configuration was
obtained.

The calculations for determining the stress free configuration
included seven iterations. After each iteration, the refractive
power of cornea was determined using the curvature of both
surfaces [15].

Fig. 4 (a) shows the dependence of the power P in diopters
with the iteration number.

It is easy to observe that after four iterations the corneal
configuration is almost equal to the reference value of
the corneal form (X, red horizontal line), according to
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its refractive power. The convergence of the power to the
reference value seems to be exponential.
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Figure 4. (color online) Variation with the iteration number of (a) the
refractive power of cornea and (b) the absolute variation of the refractive
power when compared with the reference value of 43.73 D (red horizontal
line in (a)) To better appreciate the whole curve a semilog graph is used in

(0).

In Fig. 4 (b) the absolute value of the difference between the
corneal power in a given iteration and the reference value is
plotted against the iteration number in norm - log form. The
exponential form of the dependence s clearly observed. After
four iterations the difference is around 0.006 D, impossible to
detect in a real human eye. So, four iterations seem to be an
adequate number to obtain a corneal stressed form close to
the real one.

Though these results converge slower than those of [4], the
obtained stressed configuration is good enough to follow the
preparation of the model.

We finally made the choice between the two boundary
conditions. The selection mechanism consists in calculate
the response of the two models (with the characteristics
determined above) to increases in the values of applied
pressure.

The cornea used in the calculations is shown in Fig. 5, where
a normal pressure has been applied.

Maximum displacement is obtained in the central part of
cornea, while in limbus the displacement is zero, due to the
fixed boundary.

The consequence is the increment in the curvature
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(diminishment of radius of curvature) which, of course,
influences the refractive power of cornea.
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Figure 5. Total displacement of cornea used in the calculations, with normal
pressure applied. The effect of the boundary condition provokes a zero
displacement in limbus.
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The second boundary condition is the partial ocular globe
shown in Fig. 6.

Figure 6. Total displacement of the partial ocular globe, with normal pressure
applied. Two sections are shown to better appreciate the displacement
distribution.

Differently from Fig. 5, in this case both limbus and
sclera suffer certain displacement, which absorb part of the
deformation and so, cornea has a different cross section. The
overall distribution is better appreciated in the two sections
shown in the inferior part of Fig. 6.

The differences in both situations would be reflected in
different optical and mechanical behavior when we compare
the two systems. The magnitudes selected for investigating
these differences are the refractive power of the cornea and
the apical displacement.

Figure 7 shows the result obtained for both magnitudes with
variations of the IOP from 10 to 40 mmHg.

In figure 7(a) the changes in refractive power show great
differences between both models. While cornea alone
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increases appreciably its power — from 43 to 45 D — due mainly
to the increase of its curvature, the cornea attached to part of
the ocular globe shows a slight decrement.
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Figure 7. (color online) Effect of IOP on the response of the two corneal
models considering (a) refractive power of cornea and (b) the apical
displacement. In (b) blue triangles correspond to the displacement of cornea
relative to limbus.

This is associated with the redistribution of loads to sclera,
which keeps the curvature almost constant. It is easy to see
that both systems have the same power at 15 mmHg; this is
the reference configuration for both of them.

To understand these results we plot the apical rise vs. IOP
in Fig. 7(b). Surprisingly, the apical rise is larger for the
partial globe, while for the cornea this rise is smaller. This
is counterintuitive if we consider Fig. 7(a) and the idea that
the ocular globe is more stable than cornea.

In order to understand this apparent contradiction, we
plotted also the apical displacement of cornea relative to
limbus (blue triangles in Fig. 7(b)). Now the displacement
is smaller, indicating smaller deformation of cornea.

The reason is that in the ocular globe the deformations are
transmitted to sclera and limbus, which absorb part of the
load as a lateral displacement, leading to lower apical rise
and smaller changes of corneal radiuses. Results of Fig. 7
are consistent with the optical stability of human eye in the
interval of physiological pressures.

Anyway, we found a nonzero displacement of cornea in the
partial globe, but no change in its refractive power. This
indicates that only the apical displacement is not indication
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of the change in refractive power, being the change of the
entire cornea what determines its optical performance. This
suggests that for determining the biomechanical constants of
cornea, apical rise would give incomplete information. This
will be analyzed in future work.

IV. CONCLUSIONS

The biomechanical model of a human cornea consists of a
Mooney Rivlin 5 hyperelastic energy density function, the
parameters of which are easily determined from experiments,
inflation tests for instance. The geometry is composed by
cornea, limbus ring and part of sclera, which gives more
stability in the corneal response to variations of IOP, and
other external influences, making the model response closer
to the one expected from a real eye. The mesh used consists
of three layers with 11 elements in each half meridian, giving
a total of 2 196 elements for cornea and 15 276 for cornea plus
part of sclera. In the second case, the number of elements
pertaining to cornea is the same as in the first case (2 196).

This model will be applied in the simulation of a LASIK
corrective surgery, using parameters obtained from inflation
tests performed by us.
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